(**************************************************************************) (* ___ *) (* ||M|| *) (* ||A|| A project by Andrea Asperti *) (* ||T|| *) (* ||I|| Developers: *) (* ||T|| The HELM team. *) (* ||A|| http://helm.cs.unibo.it *) (* \ / *) (* \ / This file is distributed under the terms of the *) (* v GNU General Public License Version 2 *) (* *) (**************************************************************************) notation "hvbox( T1 ➡ break term 46 T2 )" non associative with precedence 45 for @{ 'PRed $T1 $T2 }. include "basic_2/substitution/tps.ma". (* CONTEXT-FREE PARALLEL REDUCTION ON TERMS *********************************) (* Basic_1: includes: pr0_delta1 *) inductive tpr: relation term ≝ | tpr_atom : ∀I. tpr (⓪{I}) (⓪{I}) | tpr_flat : ∀I,V1,V2,T1,T2. tpr V1 V2 → tpr T1 T2 → tpr (ⓕ{I} V1. T1) (ⓕ{I} V2. T2) | tpr_beta : ∀a,V1,V2,W,T1,T2. tpr V1 V2 → tpr T1 T2 → tpr (ⓐV1. ⓛ{a}W. T1) (ⓓ{a}V2. T2) | tpr_delta: ∀a,I,V1,V2,T1,T,T2. tpr V1 V2 → tpr T1 T → ⋆. ⓑ{I} V2 ⊢ T ▶ [0, 1] T2 → tpr (ⓑ{a,I} V1. T1) (ⓑ{a,I} V2. T2) | tpr_theta: ∀a,V,V1,V2,W1,W2,T1,T2. tpr V1 V2 → ⇧[0,1] V2 ≡ V → tpr W1 W2 → tpr T1 T2 → tpr (ⓐV1. ⓓ{a}W1. T1) (ⓓ{a}W2. ⓐV. T2) | tpr_zeta : ∀V,T1,T,T2. tpr T1 T → ⇧[0, 1] T2 ≡ T → tpr (+ⓓV. T1) T2 | tpr_tau : ∀V,T1,T2. tpr T1 T2 → tpr (ⓝV. T1) T2 . interpretation "context-free parallel reduction (term)" 'PRed T1 T2 = (tpr T1 T2). (* Basic properties *********************************************************) lemma tpr_bind: ∀a,I,V1,V2,T1,T2. V1 ➡ V2 → T1 ➡ T2 → ⓑ{a,I} V1. T1 ➡ ⓑ{a,I} V2. T2. /2 width=3/ qed. (* Basic_1: was by definition: pr0_refl *) lemma tpr_refl: reflexive … tpr. #T elim T -T // #I elim I -I /2 width=1/ qed. (* Basic inversion lemmas ***************************************************) fact tpr_inv_atom1_aux: ∀U1,U2. U1 ➡ U2 → ∀I. U1 = ⓪{I} → U2 = ⓪{I}. #U1 #U2 * -U1 -U2 [ // | #I #V1 #V2 #T1 #T2 #_ #_ #k #H destruct | #a #V1 #V2 #W #T1 #T2 #_ #_ #k #H destruct | #a #I #V1 #V2 #T1 #T #T2 #_ #_ #_ #k #H destruct | #a #V #V1 #V2 #W1 #W2 #T1 #T2 #_ #_ #_ #_ #k #H destruct | #V #T1 #T #T2 #_ #_ #k #H destruct | #V #T1 #T2 #_ #k #H destruct ] qed. (* Basic_1: was: pr0_gen_sort pr0_gen_lref *) lemma tpr_inv_atom1: ∀I,U2. ⓪{I} ➡ U2 → U2 = ⓪{I}. /2 width=3/ qed-. fact tpr_inv_bind1_aux: ∀U1,U2. U1 ➡ U2 → ∀a,I,V1,T1. U1 = ⓑ{a,I} V1. T1 → (∃∃V2,T,T2. V1 ➡ V2 & T1 ➡ T & ⋆. ⓑ{I} V2 ⊢ T ▶ [0, 1] T2 & U2 = ⓑ{a,I} V2. T2 ) ∨ ∃∃T. T1 ➡ T & ⇧[0, 1] U2 ≡ T & a = true & I = Abbr. #U1 #U2 * -U1 -U2 [ #J #a #I #V #T #H destruct | #I1 #V1 #V2 #T1 #T2 #_ #_ #a #I #V #T #H destruct | #b #V1 #V2 #W #T1 #T2 #_ #_ #a #I #V #T #H destruct | #b #I1 #V1 #V2 #T1 #T #T2 #HV12 #HT1 #HT2 #a #I0 #V0 #T0 #H destruct /3 width=7/ | #b #V #V1 #V2 #W1 #W2 #T1 #T2 #_ #_ #_ #_ #a #I0 #V0 #T0 #H destruct | #V #T1 #T #T2 #HT1 #HT2 #a #I0 #V0 #T0 #H destruct /3 width=3/ | #V #T1 #T2 #_ #a #I0 #V0 #T0 #H destruct ] qed. lemma tpr_inv_bind1: ∀V1,T1,U2,a,I. ⓑ{a,I} V1. T1 ➡ U2 → (∃∃V2,T,T2. V1 ➡ V2 & T1 ➡ T & ⋆. ⓑ{I} V2 ⊢ T ▶ [0, 1] T2 & U2 = ⓑ{a,I} V2. T2 ) ∨ ∃∃T. T1 ➡ T & ⇧[0,1] U2 ≡ T & a = true & I = Abbr. /2 width=3/ qed-. (* Basic_1: was pr0_gen_abbr *) lemma tpr_inv_abbr1: ∀a,V1,T1,U2. ⓓ{a}V1. T1 ➡ U2 → (∃∃V2,T,T2. V1 ➡ V2 & T1 ➡ T & ⋆. ⓓV2 ⊢ T ▶ [0, 1] T2 & U2 = ⓓ{a}V2. T2 ) ∨ ∃∃T. T1 ➡ T & ⇧[0, 1] U2 ≡ T & a = true. #a #V1 #T1 #U2 #H elim (tpr_inv_bind1 … H) -H * /3 width=7/ qed-. fact tpr_inv_flat1_aux: ∀U1,U2. U1 ➡ U2 → ∀I,V1,U0. U1 = ⓕ{I} V1. U0 → ∨∨ ∃∃V2,T2. V1 ➡ V2 & U0 ➡ T2 & U2 = ⓕ{I} V2. T2 | ∃∃a,V2,W,T1,T2. V1 ➡ V2 & T1 ➡ T2 & U0 = ⓛ{a}W. T1 & U2 = ⓓ{a}V2. T2 & I = Appl | ∃∃a,V2,V,W1,W2,T1,T2. V1 ➡ V2 & W1 ➡ W2 & T1 ➡ T2 & ⇧[0,1] V2 ≡ V & U0 = ⓓ{a}W1. T1 & U2 = ⓓ{a}W2. ⓐV. T2 & I = Appl | (U0 ➡ U2 ∧ I = Cast). #U1 #U2 * -U1 -U2 [ #I #J #V #T #H destruct | #I #V1 #V2 #T1 #T2 #HV12 #HT12 #J #V #T #H destruct /3 width=5/ | #a #V1 #V2 #W #T1 #T2 #HV12 #HT12 #J #V #T #H destruct /3 width=9/ | #a #I #V1 #V2 #T1 #T #T2 #_ #_ #_ #J #V0 #T0 #H destruct | #a #V #V1 #V2 #W1 #W2 #T1 #T2 #HV12 #HV2 #HW12 #HT12 #J #V0 #T0 #H destruct /3 width=13/ | #V #T1 #T #T2 #_ #_ #J #V0 #T0 #H destruct | #V #T1 #T2 #HT12 #J #V0 #T0 #H destruct /3 width=1/ ] qed. lemma tpr_inv_flat1: ∀V1,U0,U2,I. ⓕ{I} V1. U0 ➡ U2 → ∨∨ ∃∃V2,T2. V1 ➡ V2 & U0 ➡ T2 & U2 = ⓕ{I} V2. T2 | ∃∃a,V2,W,T1,T2. V1 ➡ V2 & T1 ➡ T2 & U0 = ⓛ{a}W. T1 & U2 = ⓓ{a}V2. T2 & I = Appl | ∃∃a,V2,V,W1,W2,T1,T2. V1 ➡ V2 & W1 ➡ W2 & T1 ➡ T2 & ⇧[0,1] V2 ≡ V & U0 = ⓓ{a}W1. T1 & U2 = ⓓ{a}W2. ⓐV. T2 & I = Appl | (U0 ➡ U2 ∧ I = Cast). /2 width=3/ qed-. (* Basic_1: was pr0_gen_appl *) lemma tpr_inv_appl1: ∀V1,U0,U2. ⓐV1. U0 ➡ U2 → ∨∨ ∃∃V2,T2. V1 ➡ V2 & U0 ➡ T2 & U2 = ⓐV2. T2 | ∃∃a,V2,W,T1,T2. V1 ➡ V2 & T1 ➡ T2 & U0 = ⓛ{a}W. T1 & U2 = ⓓ{a}V2. T2 | ∃∃a,V2,V,W1,W2,T1,T2. V1 ➡ V2 & W1 ➡ W2 & T1 ➡ T2 & ⇧[0,1] V2 ≡ V & U0 = ⓓ{a}W1. T1 & U2 = ⓓ{a}W2. ⓐV. T2. #V1 #U0 #U2 #H elim (tpr_inv_flat1 … H) -H * /3 width=5/ /3 width=9/ /3 width=13/ #_ #H destruct qed-. (* Note: the main property of simple terms *) lemma tpr_inv_appl1_simple: ∀V1,T1,U. ⓐV1. T1 ➡ U → 𝐒⦃T1⦄ → ∃∃V2,T2. V1 ➡ V2 & T1 ➡ T2 & U = ⓐV2. T2. #V1 #T1 #U #H #HT1 elim (tpr_inv_appl1 … H) -H * [ /2 width=5/ | #a #V2 #W #W1 #W2 #_ #_ #H #_ destruct elim (simple_inv_bind … HT1) | #a #V2 #V #W1 #W2 #U1 #U2 #_ #_ #_ #_ #H #_ destruct elim (simple_inv_bind … HT1) ] qed-. (* Basic_1: was: pr0_gen_cast *) lemma tpr_inv_cast1: ∀V1,T1,U2. ⓝV1. T1 ➡ U2 → (∃∃V2,T2. V1 ➡ V2 & T1 ➡ T2 & U2 = ⓝV2. T2) ∨ T1 ➡ U2. #V1 #T1 #U2 #H elim (tpr_inv_flat1 … H) -H * /3 width=5/ #a #V2 #W #W1 #W2 [ #_ #_ #_ #_ #H destruct | #T2 #U1 #_ #_ #_ #_ #_ #_ #H destruct ] qed-. fact tpr_inv_lref2_aux: ∀T1,T2. T1 ➡ T2 → ∀i. T2 = #i → ∨∨ T1 = #i | ∃∃V,T. T ➡ #(i+1) & T1 = +ⓓV. T | ∃∃V,T. T ➡ #i & T1 = ⓝV. T. #T1 #T2 * -T1 -T2 [ #I #i #H destruct /2 width=1/ | #I #V1 #V2 #T1 #T2 #_ #_ #i #H destruct | #a #V1 #V2 #W #T1 #T2 #_ #_ #i #H destruct | #a #I #V1 #V2 #T1 #T #T2 #_ #_ #_ #i #H destruct | #a #V #V1 #V2 #W1 #W2 #T1 #T2 #_ #_ #_ #_ #i #H destruct | #V #T1 #T #T2 #HT1 #HT2 #i #H destruct lapply (lift_inv_lref1_ge … HT2 ?) -HT2 // #H destruct /3 width=4/ | #V #T1 #T2 #HT12 #i #H destruct /3 width=4/ ] qed. lemma tpr_inv_lref2: ∀T1,i. T1 ➡ #i → ∨∨ T1 = #i | ∃∃V,T. T ➡ #(i+1) & T1 = +ⓓV. T | ∃∃V,T. T ➡ #i & T1 = ⓝV. T. /2 width=3/ qed-. (* Basic forward lemmas *****************************************************) lemma tpr_fwd_bind1_minus: ∀I,V1,T1,T. -ⓑ{I}V1.T1 ➡ T → ∀b. ∃∃V2,T2. ⓑ{b,I}V1.T1 ➡ ⓑ{b,I}V2.T2 & T = -ⓑ{I}V2.T2. #I #V1 #T1 #T #H #b elim (tpr_inv_bind1 … H) -H * [ #V2 #T0 #T2 #HV12 #HT10 #HT02 #H destruct /3 width=4/ | #T2 #_ #_ #H destruct ] qed-. lemma tpr_fwd_shift1: ∀L1,T1,T. L1 @@ T1 ➡ T → ∃∃L2,T2. |L1| = |L2| & T = L2 @@ T2. #L1 @(lenv_ind_dx … L1) -L1 normalize [ #T1 #T #HT1 @(ex2_2_intro … (⋆)) // (**) (* explicit constructor *) | #I #L1 #V1 #IH #T1 #X >shift_append_assoc normalize #H elim (tpr_inv_bind1 … H) -H * [ #V0 #T0 #X0 #_ #HT10 #H0 #H destruct elim (IH … HT10) -IH -T1 #L #T #HL1 #H destruct elim (tps_fwd_shift1 … H0) -T #L2 #T2 #HL2 #H destruct >append_length >HL1 >HL2 -L1 -L @(ex2_2_intro … (⋆.ⓑ{I}V0@@L2) T2) [ >append_length ] // /2 width=3/ (**) (* explicit constructor *) | #T #_ #_ #H destruct ] ] qed-. (* Basic_1: removed theorems 3: pr0_subst0_back pr0_subst0_fwd pr0_subst0 *) (* Basic_1: removed local theorems: 1: pr0_delta_tau *)