(**************************************************************************) (* ___ *) (* ||M|| *) (* ||A|| A project by Andrea Asperti *) (* ||T|| *) (* ||I|| Developers: *) (* ||T|| The HELM team. *) (* ||A|| http://helm.cs.unibo.it *) (* \ / *) (* \ / This file is distributed under the terms of the *) (* v GNU General Public License Version 2 *) (* *) (**************************************************************************) include "basic_2/notation/relations/lrsubeq_2.ma". include "basic_2/relocation/ldrop.ma". (* LOCAL ENVIRONMENT REFINEMENT FOR EXTENDED SUBSTITUTION *******************) inductive lsuby: relation lenv ≝ | lsuby_atom: ∀L. lsuby L (⋆) | lsuby_pair: ∀I1,I2,L1,L2,V. lsuby L1 L2 → lsuby (L1.ⓑ{I1}V) (L2.ⓑ{I2}V) . interpretation "local environment refinement (extended substitution)" 'LRSubEq L1 L2 = (lsuby L1 L2). (* Basic properties *********************************************************) lemma lsuby_refl: ∀L. L ⊆ L. #L elim L -L /2 width=1 by lsuby_pair/ qed. lemma lsuby_sym: ∀L1,L2. L1 ⊆ L2 → |L1| = |L2| → L2 ⊆ L1. #L1 #L2 #H elim H -L1 -L2 [ #L1 #H >(length_inv_zero_dx … H) -L1 // | #I1 #I2 #L1 #L2 #V #_ #IHL12 #H lapply (injective_plus_l … H) -H /3 width=1 by lsuby_pair/ ] qed-. (* Basic inversion lemmas ***************************************************) fact lsuby_inv_atom1_aux: ∀L1,L2. L1 ⊆ L2 → L1 = ⋆ → L2 = ⋆. #L1 #L2 * -L1 -L2 // #I1 #I2 #L1 #L2 #V #_ #H destruct qed-. lemma lsuby_inv_atom1: ∀L2. ⋆ ⊆ L2 → L2 = ⋆. /2 width=3 by lsuby_inv_atom1_aux/ qed-. fact lsuby_inv_pair1_aux: ∀L1,L2. L1 ⊆ L2 → ∀J1,K1,W. L1 = K1.ⓑ{J1}W → L2 = ⋆ ∨ ∃∃I2,K2. K1 ⊆ K2 & L2 = K2.ⓑ{I2}W. #L1 #L2 * -L1 -L2 [ #L #J1 #K1 #W #H destruct /2 width=1 by or_introl/ | #I1 #I2 #L1 #L2 #V #HL12 #J1 #K1 #W #H destruct /3 width=4 by ex2_2_intro, or_intror/ ] qed-. lemma lsuby_inv_pair1: ∀I1,K1,L2,W. K1.ⓑ{I1}W ⊆ L2 → L2 = ⋆ ∨ ∃∃I2,K2. K1 ⊆ K2 & L2 = K2.ⓑ{I2}W. /2 width=4 by lsuby_inv_pair1_aux/ qed-. fact lsuby_inv_pair2_aux: ∀L1,L2. L1 ⊆ L2 → ∀J2,K2,W. L2 = K2.ⓑ{J2}W → ∃∃I1,K1. K1 ⊆ K2 & L1 = K1.ⓑ{I1}W. #L1 #L2 * -L1 -L2 [ #L #J2 #K2 #W #H destruct | #I1 #I2 #L1 #L2 #V #HL12 #J2 #K2 #W #H destruct /2 width=4 by ex2_2_intro/ ] qed-. lemma lsuby_inv_pair2: ∀I2,L1,K2,W. L1 ⊆ K2.ⓑ{I2}W → ∃∃I1,K1. K1 ⊆ K2 & L1 = K1.ⓑ{I1}W. /2 width=4 by lsuby_inv_pair2_aux/ qed-. (* Basic forward lemmas *****************************************************) lemma lsuby_fwd_length: ∀L1,L2. L1 ⊆ L2 → |L2| ≤ |L1|. #L1 #L2 #H elim H -L1 -L2 /2 width=1 by monotonic_le_plus_l/ qed-. lemma lsuby_ldrop_trans: ∀L1,L2. L1 ⊆ L2 → ∀I2,K2,W,s,i. ⇩[s, 0, i] L2 ≡ K2.ⓑ{I2}W → ∃∃I1,K1. K1 ⊆ K2 & ⇩[s, 0, i] L1 ≡ K1.ⓑ{I1}W. #L1 #L2 #H elim H -L1 -L2 [ #L #J2 #K2 #W #s #i #H elim (ldrop_inv_atom1 … H) -H #H destruct | #I1 #I2 #L1 #L2 #V #HL12 #IHL12 #J2 #K2 #W #s #i #H elim (ldrop_inv_O1_pair1 … H) -H * #Hi #HLK2 destruct [ -IHL12 | -HL12 ] [ /3 width=4 by ldrop_pair, ex2_2_intro/ | elim (IHL12 … HLK2) -IHL12 -HLK2 * /3 width=4 by ldrop_drop_lt, ex2_2_intro/ ] ] qed-.