(**************************************************************************) (* ___ *) (* ||M|| *) (* ||A|| A project by Andrea Asperti *) (* ||T|| *) (* ||I|| Developers: *) (* ||T|| The HELM team. *) (* ||A|| http://helm.cs.unibo.it *) (* \ / *) (* \ / This file is distributed under the terms of the *) (* v GNU General Public License Version 2 *) (* *) (**************************************************************************) notation "hvbox( ⦃ term 46 L1, break term 46 T1 ⦄ ➡ break ⦃ term 46 L2 , break term 46 T2 ⦄ )" non associative with precedence 45 for @{ 'FocalizedPRed $L1 $T1 $L2 $T2 }. include "basic_2/reducibility/tpr.ma". (* CONTEXT-FREE PARALLEL REDUCTION ON CLOSURES ******************************) definition fpr: bi_relation lenv term ≝ λL1,T1,L2,T2. |L1| = |L2| ∧ L1 @@ T1 ➡ L2 @@ T2. interpretation "context-free parallel reduction (closure)" 'FocalizedPRed L1 T1 L2 T2 = (fpr L1 T1 L2 T2). (* Basic properties *********************************************************) lemma fpr_refl: bi_reflexive … fpr. /2 width=1/ qed. lemma fpr_shift: ∀I1,I2,L1,L2,V1,V2,T1,T2. ⦃L1, -ⓑ{I1}V1.T1⦄ ➡ ⦃L2, -ⓑ{I2}V2.T2⦄ → ⦃L1.ⓑ{I1}V1, T1⦄ ➡ ⦃L2.ⓑ{I2}V2, T2⦄. #I1 #I2 #L1 #L2 #V1 #V2 #T1 #T2 * #HL12 #HT12 @conj // normalize // (**) (* explicit constructor *) qed. (* Basic inversion lemmas ***************************************************) lemma fpr_inv_atom1: ∀L2,T1,T2. ⦃⋆, T1⦄ ➡ ⦃L2, T2⦄ → T1 ➡ T2 ∧ L2 = ⋆. #L2 #T1 #T2 * #H lapply (length_inv_zero_sn … H) -H #H destruct /2 width=1/ qed-. lemma fpr_inv_atom3: ∀L1,T1,T2. ⦃L1,T1⦄ ➡ ⦃⋆,T2⦄ → T1 ➡ T2 ∧ L1 = ⋆. #L1 #T1 #T2 * #H lapply (length_inv_zero_dx … H) -H #H destruct /2 width=1/ qed-. (* Basic forward lemmas *****************************************************) lemma fpr_fwd_pair1: ∀I1,K1,L2,V1,T1,T2. ⦃K1.ⓑ{I1}V1, T1⦄ ➡ ⦃L2, T2⦄ → ∃∃I2,K2,V2. ⦃K1, -ⓑ{I1}V1.T1⦄ ➡ ⦃K2, -ⓑ{I2}V2.T2⦄ & L2 = K2.ⓑ{I2}V2. #I1 #K1 #L2 #V1 #T1 #T2 * #H elim (length_inv_pos_sn … H) -H #I2 #K2 #V2 #HK12 #H destruct /3 width=5/ qed-. lemma fpr_fwd_pair3: ∀I2,L1,K2,V2,T1,T2. ⦃L1, T1⦄ ➡ ⦃K2.ⓑ{I2}V2, T2⦄ → ∃∃I1,K1,V1. ⦃K1, -ⓑ{I1}V1.T1⦄ ➡ ⦃K2, -ⓑ{I2}V2.T2⦄ & L1 = K1.ⓑ{I1}V1. #I2 #L1 #K2 #V2 #T1 #T2 * #H elim (length_inv_pos_dx … H) -H #I1 #K1 #V1 #HK12 #H destruct /3 width=5/ qed-.