(**************************************************************************) (* ___ *) (* ||M|| *) (* ||A|| A project by Andrea Asperti *) (* ||T|| *) (* ||I|| Developers: *) (* ||T|| The HELM team. *) (* ||A|| http://helm.cs.unibo.it *) (* \ / *) (* \ / This file is distributed under the terms of the *) (* v GNU General Public License Version 2 *) (* *) (**************************************************************************) include "ground_2/ynat/ynat_plus.ma". include "basic_2/relocation/ldrop.ma". (* LAZY SN POINTWISE EXTENSION OF A CONTEXT-SENSITIVE REALTION FOR TERMS ****) inductive llpx_sn (R:relation4 bind2 lenv term term): relation4 ynat term lenv lenv ≝ | llpx_sn_sort: ∀L1,L2,d,k. |L1| = |L2| → llpx_sn R d (⋆k) L1 L2 | llpx_sn_skip: ∀L1,L2,d,i. |L1| = |L2| → yinj i < d → llpx_sn R d (#i) L1 L2 | llpx_sn_lref: ∀I,L1,L2,K1,K2,V1,V2,d,i. d ≤ yinj i → ⇩[i] L1 ≡ K1.ⓑ{I}V1 → ⇩[i] L2 ≡ K2.ⓑ{I}V2 → llpx_sn R (yinj 0) V1 K1 K2 → R I K1 V1 V2 → llpx_sn R d (#i) L1 L2 | llpx_sn_free: ∀L1,L2,d,i. |L1| ≤ i → |L2| ≤ i → |L1| = |L2| → llpx_sn R d (#i) L1 L2 | llpx_sn_gref: ∀L1,L2,d,p. |L1| = |L2| → llpx_sn R d (§p) L1 L2 | llpx_sn_bind: ∀a,I,L1,L2,V,T,d. llpx_sn R d V L1 L2 → llpx_sn R (⫯d) T (L1.ⓑ{I}V) (L2.ⓑ{I}V) → llpx_sn R d (ⓑ{a,I}V.T) L1 L2 | llpx_sn_flat: ∀I,L1,L2,V,T,d. llpx_sn R d V L1 L2 → llpx_sn R d T L1 L2 → llpx_sn R d (ⓕ{I}V.T) L1 L2 . (* Basic inversion lemmas ***************************************************) fact llpx_sn_inv_bind_aux: ∀R,L1,L2,X,d. llpx_sn R d X L1 L2 → ∀a,I,V,T. X = ⓑ{a,I}V.T → llpx_sn R d V L1 L2 ∧ llpx_sn R (⫯d) T (L1.ⓑ{I}V) (L2.ⓑ{I}V). #R #L1 #L2 #X #d * -L1 -L2 -X -d [ #L1 #L2 #d #k #_ #b #J #W #U #H destruct | #L1 #L2 #d #i #_ #_ #b #J #W #U #H destruct | #I #L1 #L2 #K1 #K2 #V1 #V2 #d #i #_ #_ #_ #_ #_ #b #J #W #U #H destruct | #L1 #L2 #d #i #_ #_ #_ #b #J #W #U #H destruct | #L1 #L2 #d #p #_ #b #J #W #U #H destruct | #a #I #L1 #L2 #V #T #d #HV #HT #b #J #W #U #H destruct /2 width=1 by conj/ | #I #L1 #L2 #V #T #d #_ #_ #b #J #W #U #H destruct ] qed-. lemma llpx_sn_inv_bind: ∀R,a,I,L1,L2,V,T,d. llpx_sn R d (ⓑ{a,I}V.T) L1 L2 → llpx_sn R d V L1 L2 ∧ llpx_sn R (⫯d) T (L1.ⓑ{I}V) (L2.ⓑ{I}V). /2 width=4 by llpx_sn_inv_bind_aux/ qed-. fact llpx_sn_inv_flat_aux: ∀R,L1,L2,X,d. llpx_sn R d X L1 L2 → ∀I,V,T. X = ⓕ{I}V.T → llpx_sn R d V L1 L2 ∧ llpx_sn R d T L1 L2. #R #L1 #L2 #X #d * -L1 -L2 -X -d [ #L1 #L2 #d #k #_ #J #W #U #H destruct | #L1 #L2 #d #i #_ #_ #J #W #U #H destruct | #I #L1 #L2 #K1 #K2 #V1 #V2 #d #i #_ #_ #_ #_ #_ #J #W #U #H destruct | #L1 #L2 #d #i #_ #_ #_ #J #W #U #H destruct | #L1 #L2 #d #p #_ #J #W #U #H destruct | #a #I #L1 #L2 #V #T #d #_ #_ #J #W #U #H destruct | #I #L1 #L2 #V #T #d #HV #HT #J #W #U #H destruct /2 width=1 by conj/ ] qed-. lemma llpx_sn_inv_flat: ∀R,I,L1,L2,V,T,d. llpx_sn R d (ⓕ{I}V.T) L1 L2 → llpx_sn R d V L1 L2 ∧ llpx_sn R d T L1 L2. /2 width=4 by llpx_sn_inv_flat_aux/ qed-. (* Basic forward lemmas *****************************************************) lemma llpx_sn_fwd_length: ∀R,L1,L2,T,d. llpx_sn R d T L1 L2 → |L1| = |L2|. #R #L1 #L2 #T #d #H elim H -L1 -L2 -T -d // #I #L1 #L2 #K1 #K2 #V1 #V2 #d #i #_ #HLK1 #HLK2 #_ #_ #HK12 lapply (ldrop_fwd_length … HLK1) -HLK1 lapply (ldrop_fwd_length … HLK2) -HLK2 normalize // qed-. lemma llpx_sn_fwd_ldrop_sn: ∀R,L1,L2,T,d. llpx_sn R d T L1 L2 → ∀K1,i. ⇩[i] L1 ≡ K1 → ∃K2. ⇩[i] L2 ≡ K2. #R #L1 #L2 #T #d #H #K1 #i #HLK1 lapply (llpx_sn_fwd_length … H) -H #HL12 lapply (ldrop_fwd_length_le2 … HLK1) -HLK1 /2 width=1 by ldrop_O1_le/ qed-. lemma llpx_sn_fwd_ldrop_dx: ∀R,L1,L2,T,d. llpx_sn R d T L1 L2 → ∀K2,i. ⇩[i] L2 ≡ K2 → ∃K1. ⇩[i] L1 ≡ K1. #R #L1 #L2 #T #d #H #K2 #i #HLK2 lapply (llpx_sn_fwd_length … H) -H #HL12 lapply (ldrop_fwd_length_le2 … HLK2) -HLK2 /2 width=1 by ldrop_O1_le/ qed-. fact llpx_sn_fwd_lref_aux: ∀R,L1,L2,X,d. llpx_sn R d X L1 L2 → ∀i. X = #i → ∨∨ |L1| ≤ i ∧ |L2| ≤ i | yinj i < d | ∃∃I,K1,K2,V1,V2. ⇩[i] L1 ≡ K1.ⓑ{I}V1 & ⇩[i] L2 ≡ K2.ⓑ{I}V2 & llpx_sn R (yinj 0) V1 K1 K2 & R I K1 V1 V2 & d ≤ yinj i. #R #L1 #L2 #X #d * -L1 -L2 -X -d [ #L1 #L2 #d #k #_ #j #H destruct | #L1 #L2 #d #i #_ #Hid #j #H destruct /2 width=1 by or3_intro1/ | #I #L1 #L2 #K1 #K2 #V1 #V2 #d #i #Hdi #HLK1 #HLK2 #HK12 #HV12 #j #H destruct /3 width=9 by or3_intro2, ex5_5_intro/ | #L1 #L2 #d #i #HL1 #HL2 #_ #j #H destruct /3 width=1 by or3_intro0, conj/ | #L1 #L2 #d #p #_ #j #H destruct | #a #I #L1 #L2 #V #T #d #_ #_ #j #H destruct | #I #L1 #L2 #V #T #d #_ #_ #j #H destruct ] qed-. lemma llpx_sn_fwd_lref: ∀R,L1,L2,d,i. llpx_sn R d (#i) L1 L2 → ∨∨ |L1| ≤ i ∧ |L2| ≤ i | yinj i < d | ∃∃I,K1,K2,V1,V2. ⇩[i] L1 ≡ K1.ⓑ{I}V1 & ⇩[i] L2 ≡ K2.ⓑ{I}V2 & llpx_sn R (yinj 0) V1 K1 K2 & R I K1 V1 V2 & d ≤ yinj i. /2 width=3 by llpx_sn_fwd_lref_aux/ qed-. lemma llpx_sn_fwd_bind_sn: ∀R,a,I,L1,L2,V,T,d. llpx_sn R d (ⓑ{a,I}V.T) L1 L2 → llpx_sn R d V L1 L2. #R #a #I #L1 #L2 #V #T #d #H elim (llpx_sn_inv_bind … H) -H // qed-. lemma llpx_sn_fwd_bind_dx: ∀R,a,I,L1,L2,V,T,d. llpx_sn R d (ⓑ{a,I}V.T) L1 L2 → llpx_sn R (⫯d) T (L1.ⓑ{I}V) (L2.ⓑ{I}V). #R #a #I #L1 #L2 #V #T #d #H elim (llpx_sn_inv_bind … H) -H // qed-. lemma llpx_sn_fwd_flat_sn: ∀R,I,L1,L2,V,T,d. llpx_sn R d (ⓕ{I}V.T) L1 L2 → llpx_sn R d V L1 L2. #R #I #L1 #L2 #V #T #d #H elim (llpx_sn_inv_flat … H) -H // qed-. lemma llpx_sn_fwd_flat_dx: ∀R,I,L1,L2,V,T,d. llpx_sn R d (ⓕ{I}V.T) L1 L2 → llpx_sn R d T L1 L2. #R #I #L1 #L2 #V #T #d #H elim (llpx_sn_inv_flat … H) -H // qed-. lemma llpx_sn_fwd_pair_sn: ∀R,I,L1,L2,V,T,d. llpx_sn R d (②{I}V.T) L1 L2 → llpx_sn R d V L1 L2. #R * /2 width=4 by llpx_sn_fwd_flat_sn, llpx_sn_fwd_bind_sn/ qed-. (* Basic_properties *********************************************************) lemma llpx_sn_refl: ∀R. (∀I,L. reflexive … (R I L)) → ∀T,L,d. llpx_sn R d T L L. #R #HR #T #L @(f2_ind … rfw … L T) -L -T #n #IH #L * * /3 width=1 by llpx_sn_sort, llpx_sn_gref, llpx_sn_bind, llpx_sn_flat/ #i #Hn elim (lt_or_ge i (|L|)) /2 width=1 by llpx_sn_free/ #HiL #d elim (ylt_split i d) /2 width=1 by llpx_sn_skip/ elim (ldrop_O1_lt … HiL) -HiL destruct /4 width=9 by llpx_sn_lref, ldrop_fwd_rfw/ qed-. lemma llpx_sn_Y: ∀R,T,L1,L2. |L1| = |L2| → llpx_sn R (∞) T L1 L2. #R #T #L1 @(f2_ind … rfw … L1 T) -L1 -T #n #IH #L1 * * /3 width=1 by llpx_sn_sort, llpx_sn_skip, llpx_sn_gref, llpx_sn_flat/ #a #I #V1 #T1 #Hn #L2 #HL12 @llpx_sn_bind /2 width=1/ (**) (* explicit constructor *) @IH -IH // normalize /2 width=1 by eq_f2/ qed-. lemma llpx_sn_ge_up: ∀R,L1,L2,U,dt. llpx_sn R dt U L1 L2 → ∀T,d,e. ⇧[d, e] T ≡ U → dt ≤ d + e → llpx_sn R d U L1 L2. #R #L1 #L2 #U #dt #H elim H -L1 -L2 -U -dt [ #L1 #L2 #dt #k #HL12 #X #d #e #H #_ >(lift_inv_sort2 … H) -H /2 width=1 by llpx_sn_sort/ | #L1 #L2 #dt #i #HL12 #Hidt #X #d #e #H #Hdtde elim (lift_inv_lref2 … H) -H * #Hid #H destruct /3 width=1 by llpx_sn_skip, ylt_inj/ -HL12 elim (ylt_yle_false … Hidt) -Hidt @(yle_trans … Hdtde) /2 width=1 by yle_inj/ (**) (* full auto too slow 11s *) | #I #L1 #L2 #K1 #K2 #W1 #W2 #dt #i #Hdti #HLK1 #HLK2 #HW1 #HW12 #_ #X #d #e #H #_ elim (lift_inv_lref2 … H) -H * #Hid #H destruct [ lapply (llpx_sn_fwd_length … HW1) -HW1 #HK12 lapply (ldrop_fwd_length … HLK1) lapply (ldrop_fwd_length … HLK2) normalize in ⊢ (%→%→?); -I -W1 -W2 -dt /3 width=1 by llpx_sn_skip, ylt_inj/ | /4 width=9 by llpx_sn_lref, yle_inj, le_plus_b/ ] | /2 width=1 by llpx_sn_free/ | #L1 #L2 #dt #p #HL12 #X #d #e #H #_ >(lift_inv_gref2 … H) -H /2 width=1 by llpx_sn_gref/ | #a #I #L1 #L2 #W #U #dt #_ #_ #IHV #IHT #X #d #e #H #Hdtde destruct elim (lift_inv_bind2 … H) -H #V #T #HVW >commutative_plus #HTU #H destruct @(llpx_sn_bind) /2 width=4 by/ (**) (* full auto fails *) @(IHT … HTU) /2 width=1 by yle_succ/ | #I #L1 #L2 #W #U #dt #_ #_ #IHV #IHT #X #d #e #H #Hdtde destruct elim (lift_inv_flat2 … H) -H #HVW #HTU #H destruct /3 width=4 by llpx_sn_flat/ ] qed-. (**) (* the minor premise comes first *) lemma llpx_sn_ge: ∀R,L1,L2,T,d1,d2. d1 ≤ d2 → llpx_sn R d1 T L1 L2 → llpx_sn R d2 T L1 L2. #R #L1 #L2 #T #d1 #d2 * -d1 -d2 (**) (* destructed yle *) /3 width=6 by llpx_sn_ge_up, llpx_sn_Y, llpx_sn_fwd_length, yle_inj/ qed-. lemma llpx_sn_bind_O: ∀R,a,I,L1,L2,V,T. llpx_sn R 0 V L1 L2 → llpx_sn R 0 T (L1.ⓑ{I}V) (L2.ⓑ{I}V) → llpx_sn R 0 (ⓑ{a,I}V.T) L1 L2. /3 width=3 by llpx_sn_ge, llpx_sn_bind/ qed-. lemma llpx_sn_co: ∀R1,R2. (∀I,L,T1,T2. R1 I L T1 T2 → R2 I L T1 T2) → ∀L1,L2,T,d. llpx_sn R1 d T L1 L2 → llpx_sn R2 d T L1 L2. #R1 #R2 #HR12 #L1 #L2 #T #d #H elim H -L1 -L2 -T -d /3 width=9 by llpx_sn_sort, llpx_sn_skip, llpx_sn_lref, llpx_sn_free, llpx_sn_gref, llpx_sn_bind, llpx_sn_flat/ qed-.