(**************************************************************************) (* ___ *) (* ||M|| *) (* ||A|| A project by Andrea Asperti *) (* ||T|| *) (* ||I|| Developers: *) (* ||T|| The HELM team. *) (* ||A|| http://helm.cs.unibo.it *) (* \ / *) (* \ / This file is distributed under the terms of the *) (* v GNU General Public License Version 2 *) (* *) (**************************************************************************) include "basic_2/grammar/lenv_length.ma". (* SN POINTWISE EXTENSION OF A CONTEXT-SENSITIVE REALTION FOR TERMS *********) inductive lpx_sn (R:relation4 bind2 lenv term term): relation lenv ≝ | lpx_sn_atom: lpx_sn R (⋆) (⋆) | lpx_sn_pair: ∀I,K1,K2,V1,V2. lpx_sn R K1 K2 → R I K1 V1 V2 → lpx_sn R (K1.ⓑ{I}V1) (K2.ⓑ{I}V2) . (* Basic properties *********************************************************) lemma lpx_sn_refl: ∀R. (∀I,L. reflexive ? (R I L)) → reflexive … (lpx_sn R). #R #HR #L elim L -L /2 width=1 by lpx_sn_atom, lpx_sn_pair/ qed-. (* Basic inversion lemmas ***************************************************) fact lpx_sn_inv_atom1_aux: ∀R,L1,L2. lpx_sn R L1 L2 → L1 = ⋆ → L2 = ⋆. #R #L1 #L2 * -L1 -L2 [ // | #I #K1 #K2 #V1 #V2 #_ #_ #H destruct ] qed-. lemma lpx_sn_inv_atom1: ∀R,L2. lpx_sn R (⋆) L2 → L2 = ⋆. /2 width=4 by lpx_sn_inv_atom1_aux/ qed-. fact lpx_sn_inv_pair1_aux: ∀R,L1,L2. lpx_sn R L1 L2 → ∀I,K1,V1. L1 = K1.ⓑ{I}V1 → ∃∃K2,V2. lpx_sn R K1 K2 & R I K1 V1 V2 & L2 = K2.ⓑ{I}V2. #R #L1 #L2 * -L1 -L2 [ #J #K1 #V1 #H destruct | #I #K1 #K2 #V1 #V2 #HK12 #HV12 #J #L #W #H destruct /2 width=5 by ex3_2_intro/ ] qed-. lemma lpx_sn_inv_pair1: ∀R,I,K1,V1,L2. lpx_sn R (K1.ⓑ{I}V1) L2 → ∃∃K2,V2. lpx_sn R K1 K2 & R I K1 V1 V2 & L2 = K2.ⓑ{I}V2. /2 width=3 by lpx_sn_inv_pair1_aux/ qed-. fact lpx_sn_inv_atom2_aux: ∀R,L1,L2. lpx_sn R L1 L2 → L2 = ⋆ → L1 = ⋆. #R #L1 #L2 * -L1 -L2 [ // | #I #K1 #K2 #V1 #V2 #_ #_ #H destruct ] qed-. lemma lpx_sn_inv_atom2: ∀R,L1. lpx_sn R L1 (⋆) → L1 = ⋆. /2 width=4 by lpx_sn_inv_atom2_aux/ qed-. fact lpx_sn_inv_pair2_aux: ∀R,L1,L2. lpx_sn R L1 L2 → ∀I,K2,V2. L2 = K2.ⓑ{I}V2 → ∃∃K1,V1. lpx_sn R K1 K2 & R I K1 V1 V2 & L1 = K1.ⓑ{I}V1. #R #L1 #L2 * -L1 -L2 [ #J #K2 #V2 #H destruct | #I #K1 #K2 #V1 #V2 #HK12 #HV12 #J #K #W #H destruct /2 width=5 by ex3_2_intro/ ] qed-. lemma lpx_sn_inv_pair2: ∀R,I,L1,K2,V2. lpx_sn R L1 (K2.ⓑ{I}V2) → ∃∃K1,V1. lpx_sn R K1 K2 & R I K1 V1 V2 & L1 = K1.ⓑ{I}V1. /2 width=3 by lpx_sn_inv_pair2_aux/ qed-. lemma lpx_sn_inv_pair: ∀R,I1,I2,L1,L2,V1,V2. lpx_sn R (L1.ⓑ{I1}V1) (L2.ⓑ{I2}V2) → ∧∧ lpx_sn R L1 L2 & R I1 L1 V1 V2 & I1 = I2. #R #I1 #I2 #L1 #L2 #V1 #V2 #H elim (lpx_sn_inv_pair1 … H) -H #L0 #V0 #HL10 #HV10 #H destruct /2 width=1 by and3_intro/ qed-. (* Basic forward lemmas *****************************************************) lemma lpx_sn_fwd_length: ∀R,L1,L2. lpx_sn R L1 L2 → |L1| = |L2|. #R #L1 #L2 #H elim H -L1 -L2 normalize // qed-.