(**************************************************************************) (* ___ *) (* ||M|| *) (* ||A|| A project by Andrea Asperti *) (* ||T|| *) (* ||I|| Developers: *) (* ||T|| The HELM team. *) (* ||A|| http://helm.cs.unibo.it *) (* \ / *) (* \ / This file is distributed under the terms of the *) (* v GNU General Public License Version 2 *) (* *) (**************************************************************************) notation "hvbox( h ⊢ break term 46 L1 : ⊑ break term 46 L2 )" non associative with precedence 45 for @{ 'CrSubEqN $h $L1 $L2 }. notation "hvbox( h ⊢ break term 46 L1 : : ⊑ break term 46 L2 )" non associative with precedence 45 for @{ 'CrSubEqNAlt $h $L1 $L2 }. include "basic_2/dynamic/nta.ma". (* LOCAL ENVIRONMENT REFINEMENT FOR NATIVE TYPE ASSIGNMENT ******************) (* Note: may not be transitive *) inductive lsubn (h:sh): relation lenv ≝ | lsubn_atom: lsubn h (⋆) (⋆) | lsubn_pair: ∀I,L1,L2,W. lsubn h L1 L2 → lsubn h (L1. ⓑ{I} W) (L2. ⓑ{I} W) | lsubn_abbr: ∀L1,L2,V,W. ⦃h, L1⦄ ⊢ V : W → ⦃h, L2⦄ ⊢ V : W → lsubn h L1 L2 → lsubn h (L1. ⓓV) (L2. ⓛW) . interpretation "local environment refinement (native type assigment)" 'CrSubEqN h L1 L2 = (lsubn h L1 L2). (* Basic inversion lemmas ***************************************************) fact lsubn_inv_atom1_aux: ∀h,L1,L2. h ⊢ L1 :⊑ L2 → L1 = ⋆ → L2 = ⋆. #h #L1 #L2 * -L1 -L2 [ // | #I #L1 #L2 #V #_ #H destruct | #L1 #L2 #V #W #_ #_ #_ #H destruct ] qed. lemma lsubn_inv_atom1: ∀h,L2. h ⊢ ⋆ :⊑ L2 → L2 = ⋆. /2 width=4/ qed-. fact lsubn_inv_pair1_aux: ∀h,L1,L2. h ⊢ L1 :⊑ L2 → ∀I,K1,V. L1 = K1. ⓑ{I} V → (∃∃K2. h ⊢ K1 :⊑ K2 & L2 = K2. ⓑ{I} V) ∨ ∃∃K2,W. ⦃h, K1⦄ ⊢ V : W & ⦃h, K2⦄ ⊢ V : W & h ⊢ K1 :⊑ K2 & L2 = K2. ⓛW & I = Abbr. #h #L1 #L2 * -L1 -L2 [ #I #K1 #V #H destruct | #J #L1 #L2 #V #HL12 #I #K1 #W #H destruct /3 width=3/ | #L1 #L2 #V #W #H1VW #H2VW #HL12 #I #K1 #V1 #H destruct /3 width=7/ ] qed. lemma lsubn_inv_pair1: ∀h,I,K1,L2,V. h ⊢ K1. ⓑ{I} V :⊑ L2 → (∃∃K2. h ⊢ K1 :⊑ K2 & L2 = K2. ⓑ{I} V) ∨ ∃∃K2,W. ⦃h, K1⦄ ⊢ V : W & ⦃h, K2⦄ ⊢ V : W & h ⊢ K1 :⊑ K2 & L2 = K2. ⓛW & I = Abbr. /2 width=3/ qed-. fact lsubn_inv_atom2_aux: ∀h,L1,L2. h ⊢ L1 :⊑ L2 → L2 = ⋆ → L1 = ⋆. #h #L1 #L2 * -L1 -L2 [ // | #I #L1 #L2 #V #_ #H destruct | #L1 #L2 #V #W #_ #_ #_ #H destruct ] qed. lemma lsubc_inv_atom2: ∀h,L1. h ⊢ L1 :⊑ ⋆ → L1 = ⋆. /2 width=4/ qed-. fact lsubn_inv_pair2_aux: ∀h,L1,L2. h ⊢ L1 :⊑ L2 → ∀I,K2,W. L2 = K2. ⓑ{I} W → (∃∃K1. h ⊢ K1 :⊑ K2 & L1 = K1. ⓑ{I} W) ∨ ∃∃K1,V. ⦃h, K1⦄ ⊢ V : W & ⦃h, K2⦄ ⊢ V : W & h ⊢ K1 :⊑ K2 & L1 = K1. ⓓV & I = Abst. #h #L1 #L2 * -L1 -L2 [ #I #K2 #W #H destruct | #J #L1 #L2 #V #HL12 #I #K2 #W #H destruct /3 width=3/ | #L1 #L2 #V #W #H1VW #H2VW #HL12 #I #K2 #W2 #H destruct /3 width=7/ ] qed. (* Basic_1: was: csubt_gen_bind *) lemma lsubn_inv_pair2: ∀h,I,L1,K2,W. h ⊢ L1 :⊑ K2. ⓑ{I} W → (∃∃K1. h ⊢ K1 :⊑ K2 & L1 = K1. ⓑ{I} W) ∨ ∃∃K1,V. ⦃h, K1⦄ ⊢ V : W & ⦃h, K2⦄ ⊢ V : W & h ⊢ K1 :⊑ K2 & L1 = K1. ⓓV & I = Abst. /2 width=3/ qed-. (* Basic_forward lemmas *****************************************************) lemma lsubn_fwd_lsubs1: ∀h,L1,L2. h ⊢ L1 :⊑ L2 → L1 ≼[0, |L1|] L2. #h #L1 #L2 #H elim H -L1 -L2 // /2 width=1/ qed-. lemma lsubn_fwd_lsubs2: ∀h,L1,L2. h ⊢ L1 :⊑ L2 → L1 ≼[0, |L2|] L2. #h #L1 #L2 #H elim H -L1 -L2 // /2 width=1/ qed-. (* Basic properties *********************************************************) (* Basic_1: was: csubt_refl *) lemma lsubn_refl: ∀h,L. h ⊢ L :⊑ L. #h #L elim L -L // /2 width=1/ qed. (* Basic_1: removed theorems 6: csubt_gen_flat csubt_drop_flat csubt_clear_conf csubt_getl_abbr csubt_getl_abst csubt_ty3_ld *)