(**************************************************************************) (* ___ *) (* ||M|| *) (* ||A|| A project by Andrea Asperti *) (* ||T|| *) (* ||I|| Developers: *) (* ||T|| The HELM team. *) (* ||A|| http://helm.cs.unibo.it *) (* \ / *) (* \ / This file is distributed under the terms of the *) (* v GNU General Public License Version 2 *) (* *) (**************************************************************************) include "basic_2/notation/relations/statictype_5.ma". include "basic_2/grammar/genv.ma". include "basic_2/substitution/drop.ma". include "basic_2/static/sh.ma". (* STATIC TYPE ASSIGNMENT ON TERMS ******************************************) (* activate genv *) inductive sta (h:sh): relation4 genv lenv term term ≝ | sta_sort: ∀G,L,k. sta h G L (⋆k) (⋆(next h k)) | sta_ldef: ∀G,L,K,V,W,U,i. ⇩[i] L ≡ K.ⓓV → sta h G K V W → ⇧[0, i + 1] W ≡ U → sta h G L (#i) U | sta_ldec: ∀G,L,K,W,V,U,i. ⇩[i] L ≡ K.ⓛW → sta h G K W V → ⇧[0, i + 1] W ≡ U → sta h G L (#i) U | sta_bind: ∀a,I,G,L,V,T,U. sta h G (L.ⓑ{I}V) T U → sta h G L (ⓑ{a,I}V.T) (ⓑ{a,I}V.U) | sta_appl: ∀G,L,V,T,U. sta h G L T U → sta h G L (ⓐV.T) (ⓐV.U) | sta_cast: ∀G,L,W,T,U. sta h G L T U → sta h G L (ⓝW.T) U . interpretation "static type assignment (term)" 'StaticType h G L T U = (sta h G L T U). (* Basic inversion lemmas ************************************************) fact sta_inv_sort1_aux: ∀h,G,L,T,U. ⦃G, L⦄ ⊢ T •[h] U → ∀k0. T = ⋆k0 → U = ⋆(next h k0). #h #G #L #T #U * -G -L -T -U [ #G #L #k #k0 #H destruct // | #G #L #K #V #W #U #i #_ #_ #_ #k0 #H destruct | #G #L #K #W #V #U #i #_ #_ #_ #k0 #H destruct | #a #I #G #L #V #T #U #_ #k0 #H destruct | #G #L #V #T #U #_ #k0 #H destruct | #G #L #W #T #U #_ #k0 #H destruct qed-. (* Basic_1: was: sty0_gen_sort *) lemma sta_inv_sort1: ∀h,G,L,U,k. ⦃G, L⦄ ⊢ ⋆k •[h] U → U = ⋆(next h k). /2 width=5 by sta_inv_sort1_aux/ qed-. fact sta_inv_lref1_aux: ∀h,G,L,T,U. ⦃G, L⦄ ⊢ T •[h] U → ∀j. T = #j → (∃∃K,V,W. ⇩[j] L ≡ K.ⓓV & ⦃G, K⦄ ⊢ V •[h] W & ⇧[0, j+1] W ≡ U ) ∨ (∃∃K,W,V. ⇩[j] L ≡ K.ⓛW & ⦃G, K⦄ ⊢ W •[h] V & ⇧[0, j+1] W ≡ U ). #h #G #L #T #U * -G -L -T -U [ #G #L #k #j #H destruct | #G #L #K #V #W #U #i #HLK #HVW #HWU #j #H destruct /3 width=6 by or_introl, ex3_3_intro/ | #G #L #K #W #V #U #i #HLK #HWV #HWU #j #H destruct /3 width=6 by or_intror, ex3_3_intro/ | #a #I #G #L #V #T #U #_ #j #H destruct | #G #L #V #T #U #_ #j #H destruct | #G #L #W #T #U #_ #j #H destruct ] qed-. (* Basic_1: was sty0_gen_lref *) lemma sta_inv_lref1: ∀h,G,L,U,i. ⦃G, L⦄ ⊢ #i •[h] U → (∃∃K,V,W. ⇩[i] L ≡ K.ⓓV & ⦃G, K⦄ ⊢ V •[h] W & ⇧[0, i+1] W ≡ U ) ∨ (∃∃K,W,V. ⇩[i] L ≡ K.ⓛW & ⦃G, K⦄ ⊢ W •[h] V & ⇧[0, i+1] W ≡ U ). /2 width=3 by sta_inv_lref1_aux/ qed-. fact sta_inv_gref1_aux: ∀h,G,L,T,U. ⦃G, L⦄ ⊢ T •[h] U → ∀p0. T = §p0 → ⊥. #h #G #L #T #U * -G -L -T -U [ #G #L #k #p0 #H destruct | #G #L #K #V #W #U #i #_ #_ #_ #p0 #H destruct | #G #L #K #W #V #U #i #_ #_ #_ #p0 #H destruct | #a #I #G #L #V #T #U #_ #p0 #H destruct | #G #L #V #T #U #_ #p0 #H destruct | #G #L #W #T #U #_ #p0 #H destruct qed-. lemma sta_inv_gref1: ∀h,G,L,U,p. ⦃G, L⦄ ⊢ §p •[h] U → ⊥. /2 width=8 by sta_inv_gref1_aux/ qed-. fact sta_inv_bind1_aux: ∀h,G,L,T,U. ⦃G, L⦄ ⊢ T •[h] U → ∀b,J,X,Y. T = ⓑ{b,J}Y.X → ∃∃Z. ⦃G, L.ⓑ{J}Y⦄ ⊢ X •[h] Z & U = ⓑ{b,J}Y.Z. #h #G #L #T #U * -G -L -T -U [ #G #L #k #b #J #X #Y #H destruct | #G #L #K #V #W #U #i #_ #_ #_ #b #J #X #Y #H destruct | #G #L #K #W #V #U #i #_ #_ #_ #b #J #X #Y #H destruct | #a #I #G #L #V #T #U #HTU #b #J #X #Y #H destruct /2 width=3 by ex2_intro/ | #G #L #V #T #U #_ #b #J #X #Y #H destruct | #G #L #W #T #U #_ #b #J #X #Y #H destruct ] qed-. (* Basic_1: was: sty0_gen_bind *) lemma sta_inv_bind1: ∀h,b,J,G,L,Y,X,U. ⦃G, L⦄ ⊢ ⓑ{b,J}Y.X •[h] U → ∃∃Z. ⦃G, L.ⓑ{J}Y⦄ ⊢ X •[h] Z & U = ⓑ{b,J}Y.Z. /2 width=3 by sta_inv_bind1_aux/ qed-. fact sta_inv_appl1_aux: ∀h,G,L,T,U. ⦃G, L⦄ ⊢ T •[h] U → ∀X,Y. T = ⓐY.X → ∃∃Z. ⦃G, L⦄ ⊢ X •[h] Z & U = ⓐY.Z. #h #G #L #T #U * -G -L -T -U [ #G #L #k #X #Y #H destruct | #G #L #K #V #W #U #i #_ #_ #_ #X #Y #H destruct | #G #L #K #W #V #U #i #_ #_ #_ #X #Y #H destruct | #a #I #G #L #V #T #U #_ #X #Y #H destruct | #G #L #V #T #U #HTU #X #Y #H destruct /2 width=3 by ex2_intro/ | #G #L #W #T #U #_ #X #Y #H destruct ] qed-. (* Basic_1: was: sty0_gen_appl *) lemma sta_inv_appl1: ∀h,G,L,Y,X,U. ⦃G, L⦄ ⊢ ⓐY.X •[h] U → ∃∃Z. ⦃G, L⦄ ⊢ X •[h] Z & U = ⓐY.Z. /2 width=3 by sta_inv_appl1_aux/ qed-. fact sta_inv_cast1_aux: ∀h,G,L,T,U. ⦃G, L⦄ ⊢ T •[h] U → ∀X,Y. T = ⓝY.X → ⦃G, L⦄ ⊢ X •[h] U. #h #G #L #T #U * -G -L -T -U [ #G #L #k #X #Y #H destruct | #G #L #K #V #W #U #i #_ #_ #_ #X #Y #H destruct | #G #L #K #W #V #U #i #_ #_ #_ #X #Y #H destruct | #a #I #G #L #V #T #U #_ #X #Y #H destruct | #G #L #V #T #U #_ #X #Y #H destruct | #G #L #W #T #U #HTU #X #Y #H destruct // ] qed-. (* Basic_1: was: sty0_gen_cast *) lemma sta_inv_cast1: ∀h,G,L,X,Y,U. ⦃G, L⦄ ⊢ ⓝY.X •[h] U → ⦃G, L⦄ ⊢ X •[h] U. /2 width=4 by sta_inv_cast1_aux/ qed-.