(**************************************************************************) (* ___ *) (* ||M|| *) (* ||A|| A project by Andrea Asperti *) (* ||T|| *) (* ||I|| Developers: *) (* ||T|| The HELM team. *) (* ||A|| http://helm.cs.unibo.it *) (* \ / *) (* \ / This file is distributed under the terms of the *) (* v GNU General Public License Version 2 *) (* *) (**************************************************************************) include "basic_2/notation/relations/ineint_5.ma". include "basic_2/grammar/aarity.ma". include "basic_2/substitution/lift_vector.ma". include "basic_2/computation/gcp.ma". (* GENERIC COMPUTATION PROPERTIES *******************************************) definition S0 ≝ λC:candidate. ∀G,L1,L2,T1,T2. ⦃L1, T1⦄ ⇳[Ⓕ] ⦃L2, T2⦄ → C G L1 T1 → C G L2 T2. definition S0s ≝ λC:candidate. ∀G,L1,L2,T1,T2. ⦃L1, T1⦄ ⇳*[Ⓕ] ⦃L2, T2⦄ → C G L1 T1 → C G L2 T2. (* Note: this is Girard's CR1 *) definition S1 ≝ λRP,C:candidate. ∀G,L,T. C G L T → RP G L T. (* Note: this is Tait's iii, or Girard's CR4 *) definition S2 ≝ λRR:relation4 genv lenv term term. λRS:relation term. λRP,C:candidate. ∀G,L,Vs. all … (RP G L) Vs → ∀T. 𝐒⦃T⦄ → NF … (RR G L) RS T → C G L (ⒶVs.T). (* Note: this generalizes Tait's ii *) definition S3 ≝ λC:candidate. ∀a,G,L,Vs,V,T,W. C G L (ⒶVs.ⓓ{a}ⓝW.V.T) → C G L (ⒶVs.ⓐV.ⓛ{a}W.T). definition S4 ≝ λRP,C:candidate. ∀G,L,Vs. all … (RP G L) Vs → ∀k. C G L (ⒶVs.⋆k). definition S5 ≝ λC:candidate. ∀I,G,L,K,Vs,V1,V2,i. C G L (ⒶVs.V2) → ⇧[0, i+1] V1 ≡ V2 → ⇩[i] L ≡ K.ⓑ{I}V1 → C G L (ⒶVs.#i). definition S6 ≝ λRP,C:candidate. ∀G,L,V1s,V2s. ⇧[0, 1] V1s ≡ V2s → ∀a,V,T. C G (L.ⓓV) (ⒶV2s.T) → RP G L V → C G L (ⒶV1s.ⓓ{a}V.T). definition S7 ≝ λC:candidate. ∀G,L,Vs,T,W. C G L (ⒶVs.T) → C G L (ⒶVs.W) → C G L (ⒶVs.ⓝW.T). (* requirements for the generic reducibility candidate *) record gcr (RR:relation4 genv lenv term term) (RS:relation term) (RP,C:candidate) : Prop ≝ { s0: S0 C; s1: S1 RP C; s2: S2 RR RS RP C; s3: S3 C; s4: S4 RP C; s5: S5 C; s6: S6 RP C; s7: S7 C }. (* the functional construction for candidates *) definition cfun: candidate → candidate → candidate ≝ λC1,C2,G,K,T. ∀L,V,U. ⦃K, T⦄ ⇳*[Ⓕ] ⦃L, U⦄ → C1 G L V → C2 G L (ⓐV.U). (* the reducibility candidate associated to an atomic arity *) let rec acr (RP:candidate) (A:aarity) on A: candidate ≝ match A with [ AAtom ⇒ RP | APair B A ⇒ cfun (acr RP B) (acr RP A) ]. interpretation "candidate of reducibility of an atomic arity (abstract)" 'InEInt RP G L T A = (acr RP A G L T). (* Basic properties *********************************************************) (* Basic_1: was just: sc3_lift1 *) lemma gcr_fpas: ∀C. S0 C → S0s C. #C #HC #G #L1 #L2 #T1 #T2 #H @(fpas_ind … H) -L2 -T2 /3 width=5 by/ qed. (* lemma rp_lifts: ∀RR,RS,RP. gcr RR RS RP RP → ∀des,G,L0,L,V,V0. ⇩*[Ⓕ, des] L0 ≡ L → ⇧*[des] V ≡ V0 → RP G L V → RP G L0 V0. #RR #RS #RP #HRP #des #G #L0 #L #V #V0 #HL0 #HV0 #HV @gcr_lifts /width=7 by/ @(s0 … HRP) qed. (* Basic_1: was only: sns3_lifts1 *) lemma rp_liftsv_all: ∀RR,RS,RP. gcr RR RS RP RP → ∀des,G,L0,L,Vs,V0s. ⇩*[Ⓕ, des] L0 ≡ L → ⇧*[des] Vs ≡ V0s → all … (RP G L) Vs → all … (RP G L0) V0s. #RR #RS #RP #HRP #des #G #L0 #L #Vs #V0s #HL0 #H elim H -Vs -V0s normalize // #T1s #T2s #T1 #T2 #HT12 #_ #IHT2s * /3 width=7 by rp_lifts, conj/ qed. *) (* Basic_1: was: sc3_sn3 sc3_abst sc3_appl sc3_abbr sc3_bind sc3_cast sc3_lift *) lemma acr_gcr: ∀RR,RS,RP. gcp RR RS RP → gcr RR RS RP RP → ∀A. gcr RR RS RP (acr RP A). #RR #RS #RP #H1RP #H2RP #A elim A -A // #B #A #IHB #IHA @mk_gcr [ /3 width=4 by fpas_strap2/ | #G #L #T #H elim (cp1 … H1RP G L) #k #HK lapply (H L (⋆k) T ? ?) -H // [ @(s2 … IHB … (◊)) // | #H @(cp2 … H1RP … k) @(s1 … IHA) // ] | #G #L #Vs #HVs #T #H1T #H2T #L0 #V0 #X #H #HB elim (lifts_inv_applv1 … H) -H #V0s #T0 #HV0s #HT0 #H destruct lapply (s1 … IHB … HB) #HV0 @(s2 … IHA … (V0 @ V0s)) /3 width=14 by rp_liftsv_all, gcp_lifts, cp0, lifts_simple_dx, conj/ | #a #G #L #Vs #U #T #W #HA #L0 #V0 #X #des #HL0 #H #HB elim (lifts_inv_applv1 … H) -H #V0s #Y #HV0s #HY #H destruct elim (lifts_inv_flat1 … HY) -HY #U0 #X #HU0 #HX #H destruct elim (lifts_inv_bind1 … HX) -HX #W0 #T0 #HW0 #HT0 #H destruct @(s3 … IHA … (V0 @ V0s)) /5 width=6 by lifts_applv, lifts_flat, lifts_bind/ | #G #L #Vs #HVs #k #L0 #V0 #X #des #HL0 #H #HB elim (lifts_inv_applv1 … H) -H #V0s #Y #HV0s #HY #H destruct >(lifts_inv_sort1 … HY) -Y lapply (s1 … IHB … HB) #HV0 @(s4 … IHA … (V0 @ V0s)) /3 width=7 by rp_liftsv_all, conj/ | #I #G #L #K #Vs #V1 #V2 #i #HA #HV12 #HLK #L0 #V0 #X #des #HL0 #H #HB elim (lifts_inv_applv1 … H) -H #V0s #Y #HV0s #HY #H destruct elim (lifts_inv_lref1 … HY) -HY #i0 #Hi0 #H destruct elim (drops_drop_trans … HL0 … HLK) #X #des0 #i1 #HL02 #H #Hi1 #Hdes0 >(at_mono … Hi1 … Hi0) in HL02; -i1 #HL02 elim (drops_inv_skip2 … Hdes0 … H) -H -des0 #L2 #W1 #des0 #Hdes0 #HLK #HVW1 #H destruct elim (lift_total W1 0 (i0 + 1)) #W2 #HW12 elim (lifts_lift_trans … Hdes0 … HVW1 … HW12) // -Hdes0 -Hi0 #V3 #HV13 #HVW2 >(lift_mono … HV13 … HV12) in HVW2; -V3 #HVW2 @(s5 … IHA … (V0 @ V0s) … HW12 HL02) /3 width=5 by lifts_applv/ | #G #L #V1s #V2s #HV12s #a #V #T #HA #HV #L0 #V10 #X #des #HL0 #H #HB elim (lifts_inv_applv1 … H) -H #V10s #Y #HV10s #HY #H destruct elim (lifts_inv_bind1 … HY) -HY #V0 #T0 #HV0 #HT0 #H destruct elim (lift_total V10 0 1) #V20 #HV120 elim (liftv_total 0 1 V10s) #V20s #HV120s @(s6 … IHA … (V10 @ V10s) (V20 @ V20s)) /3 width=7 by rp_lifts, liftv_cons/ @(HA … (des + 1)) /2 width=2 by drops_skip/ [ @lifts_applv // elim (liftsv_liftv_trans_le … HV10s … HV120s) -V10s #V10s #HV10s #HV120s >(liftv_mono … HV12s … HV10s) -V1s // | @(s0 … IHB … HB … HV120) /2 width=2 by drop_drop/ ] | #G #L #Vs #T #W #HA #HW #L0 #V0 #X #des #HL0 #H #HB elim (lifts_inv_applv1 … H) -H #V0s #Y #HV0s #HY #H destruct elim (lifts_inv_flat1 … HY) -HY #W0 #T0 #HW0 #HT0 #H destruct @(s7 … IHA … (V0 @ V0s)) /3 width=5 by lifts_applv/ ] qed. lemma acr_abst: ∀RR,RS,RP. gcp RR RS RP → gcr RR RS RP RP → ∀a,G,L,W,T,A,B. ⦃G, L, W⦄ ϵ[RP] 〚B〛 → ( ∀L0,V0,W0,T0,des. ⇩*[Ⓕ, des] L0 ≡ L → ⇧*[des] W ≡ W0 → ⇧*[des + 1] T ≡ T0 → ⦃G, L0, V0⦄ ϵ[RP] 〚B〛 → ⦃G, L0, W0⦄ ϵ[RP] 〚B〛 → ⦃G, L0.ⓓⓝW0.V0, T0⦄ ϵ[RP] 〚A〛 ) → ⦃G, L, ⓛ{a}W.T⦄ ϵ[RP] 〚②B.A〛. #RR #RS #RP #H1RP #H2RP #a #G #L #W #T #A #B #HW #HA #L0 #V0 #X #des #HL0 #H #HB lapply (acr_gcr … H1RP H2RP A) #HCA lapply (acr_gcr … H1RP H2RP B) #HCB elim (lifts_inv_bind1 … H) -H #W0 #T0 #HW0 #HT0 #H destruct lapply (gcr_lifts … HL0 … HW0 HW) -HW [ @(s0 … HCB) ] #HW0 @(s3 … HCA … (◊)) @(s6 … HCA … (◊) (◊)) // [ @(HA … HL0) // | lapply (s1 … HCB) -HCB #HCB @(s7 … H2RP … (◊)) /2 width=1 by/ ] qed. (* Basic_1: removed theorems 2: sc3_arity_gen sc3_repl *) (* Basic_1: removed local theorems 1: sc3_sn3_abst *)