(**************************************************************************) (* ___ *) (* ||M|| *) (* ||A|| A project by Andrea Asperti *) (* ||T|| *) (* ||I|| Developers: *) (* ||T|| The HELM team. *) (* ||A|| http://helm.cs.unibo.it *) (* \ / *) (* \ / This file is distributed under the terms of the *) (* v GNU General Public License Version 2 *) (* *) (**************************************************************************) notation "hvbox( ⦃ term 46 L1, break term 46 T1 ⦄ ⧁ break ⦃ term 46 L2 , break term 46 T2 ⦄ )" non associative with precedence 45 for @{ 'RestSupTerm $L1 $T1 $L2 $T2 }. include "basic_2/grammar/cl_weight.ma". include "basic_2/substitution/lift.ma". (* RESTRICTED SUPCLOSURE ****************************************************) inductive frsup: bi_relation lenv term ≝ | frsup_bind_sn: ∀a,I,L,V,T. frsup L (ⓑ{a,I}V.T) L V | frsup_bind_dx: ∀a,I,L,V,T. frsup L (ⓑ{a,I}V.T) (L.ⓑ{I}V) T | frsup_flat_sn: ∀I,L,V,T. frsup L (ⓕ{I}V.T) L V | frsup_flat_dx: ∀I,L,V,T. frsup L (ⓕ{I}V.T) L T . interpretation "restricted structural predecessor (closure)" 'RestSupTerm L1 T1 L2 T2 = (frsup L1 T1 L2 T2). (* Basic inversion lemmas ***************************************************) fact frsup_inv_atom1_aux: ∀L1,L2,T1,T2. ⦃L1, T1⦄ ⧁ ⦃L2, T2⦄ → ∀J. T1 = ⓪{J} → ⊥. #L1 #L2 #T1 #T2 * -L1 -L2 -T1 -T2 [ #a #I #L #V #T #J #H destruct | #a #I #L #V #T #J #H destruct | #I #L #V #T #J #H destruct | #I #L #V #T #J #H destruct ] qed-. lemma frsup_inv_atom1: ∀J,L1,L2,T2. ⦃L1, ⓪{J}⦄ ⧁ ⦃L2, T2⦄ → ⊥. /2 width=7 by frsup_inv_atom1_aux/ qed-. fact frsup_inv_bind1_aux: ∀L1,L2,T1,T2. ⦃L1, T1⦄ ⧁ ⦃L2, T2⦄ → ∀b,J,W,U. T1 = ⓑ{b,J}W.U → (L2 = L1 ∧ T2 = W) ∨ (L2 = L1.ⓑ{J}W ∧ T2 = U). #L1 #L2 #T1 #T2 * -L1 -L2 -T1 -T2 [ #a #I #L #V #T #b #J #W #U #H destruct /3 width=1/ | #a #I #L #V #T #b #J #W #U #H destruct /3 width=1/ | #I #L #V #T #b #J #W #U #H destruct | #I #L #V #T #b #J #W #U #H destruct ] qed-. lemma frsup_inv_bind1: ∀b,J,L1,L2,W,U,T2. ⦃L1, ⓑ{b,J}W.U⦄ ⧁ ⦃L2, T2⦄ → (L2 = L1 ∧ T2 = W) ∨ (L2 = L1.ⓑ{J}W ∧ T2 = U). /2 width=4 by frsup_inv_bind1_aux/ qed-. fact frsup_inv_flat1_aux: ∀L1,L2,T1,T2. ⦃L1, T1⦄ ⧁ ⦃L2, T2⦄ → ∀J,W,U. T1 = ⓕ{J}W.U → L2 = L1 ∧ (T2 = W ∨ T2 = U). #L1 #L2 #T1 #T2 * -L1 -L2 -T1 -T2 [ #a #I #L #V #T #J #W #U #H destruct | #a #I #L #V #T #J #W #U #H destruct | #I #L #V #T #J #W #U #H destruct /3 width=1/ | #I #L #V #T #J #W #U #H destruct /3 width=1/ ] qed-. lemma frsup_inv_flat1: ∀J,L1,L2,W,U,T2. ⦃L1, ⓕ{J}W.U⦄ ⧁ ⦃L2, T2⦄ → L2 = L1 ∧ (T2 = W ∨ T2 = U). /2 width=4 by frsup_inv_flat1_aux/ qed-. (* Basic forward lemmas *****************************************************) lemma frsup_fwd_fw: ∀L1,L2,T1,T2. ⦃L1, T1⦄ ⧁ ⦃L2, T2⦄ → ♯{L2, T2} < ♯{L1, T1}. #L1 #L2 #T1 #T2 * -L1 -L2 -T1 -T2 /width=1/ qed-. lemma frsup_fwd_lw: ∀L1,L2,T1,T2. ⦃L1, T1⦄ ⧁ ⦃L2, T2⦄ → ♯{L1} ≤ ♯{L2}. #L1 #L2 #T1 #T2 * -L1 -L2 -T1 -T2 /width=1/ qed-. lemma frsup_fwd_tw: ∀L1,L2,T1,T2. ⦃L1, T1⦄ ⧁ ⦃L2, T2⦄ → ♯{T2} < ♯{T1}. #L1 #L2 #T1 #T2 * -L1 -L2 -T1 -T2 /width=1/ /2 width=1 by le_minus_to_plus/ qed-. lemma frsup_fwd_append: ∀L1,L2,T1,T2. ⦃L1, T1⦄ ⧁ ⦃L2, T2⦄ → ∃L. L2 = L1 @@ L. #L1 #L2 #T1 #T2 * -L1 -L2 -T1 -T2 [ #a | #a #I #L #V #_ @(ex_intro … (⋆.ⓑ{I}V)) // ] #I #L #V #T @(ex_intro … (⋆)) // qed-. (* Advanced forward lemmas **************************************************) lemma lift_frsup_trans: ∀T1,U1,d,e. ⇧[d, e] T1 ≡ U1 → ∀L,K,U2. ⦃L, U1⦄ ⧁ ⦃L @@ K, U2⦄ → ∃T2. ⇧[d + |K|, e] T2 ≡ U2. #T1 #U1 #d #e * -T1 -U1 -d -e [5: #a #I #V1 #W1 #T1 #U1 #d #e #HVW1 #HTU1 #L #K #X #H elim (frsup_inv_bind1 … H) -H * [ -HTU1 #H1 #H2 destruct >(append_inv_refl_dx … H1) -L -K normalize /2 width=2/ | -HVW1 #H1 #H2 destruct >(append_inv_pair_dx … H1) -L -K normalize /2 width=2/ ] |6: #I #V1 #W1 #T1 #U1 #d #e #HVW1 #HUT1 #L #K #X #H elim (frsup_inv_flat1 … H) -H #H1 * #H2 destruct >(append_inv_refl_dx … H1) -L -K normalize /2 width=2/ ] #i #d #e [2,3: #_ ] #L #K #X #H elim (frsup_inv_atom1 … H) qed-.