(**************************************************************************) (* ___ *) (* ||M|| *) (* ||A|| A project by Andrea Asperti *) (* ||T|| *) (* ||I|| Developers: *) (* ||T|| The HELM team. *) (* ||A|| http://helm.cs.unibo.it *) (* \ / *) (* \ / This file is distributed under the terms of the *) (* v GNU General Public License Version 2 *) (* *) (**************************************************************************) include "basic_2/notation/relations/lazysnalt_6.ma". include "basic_2/substitution/lleq_lleq.ma". include "basic_2/computation/llpxs_lleq.ma". include "basic_2/computation/llsx.ma". (* SN EXTENDED STRONGLY NORMALIZING LOCAL ENVIRONMENTS **********************) (* alternative definition of llsx *) definition llsxa: ∀h. sd h → relation4 ynat term genv lenv ≝ λh,g,d,T,G. SN … (llpxs h g G d T) (lleq d T). interpretation "lazy extended strong normalization (local environment) alternative" 'LazySNAlt h g d T G L = (llsxa h g T d G L). (* Basic eliminators ********************************************************) lemma llsxa_ind: ∀h,g,G,T,d. ∀R:predicate lenv. (∀L1. G ⊢ ⋕⬊⬊*[h, g, T, d] L1 → (∀L2. ⦃G, L1⦄ ⊢ ➡*[h, g, T, d] L2 → (L1 ⋕[T, d] L2 → ⊥) → R L2) → R L1 ) → ∀L. G ⊢ ⋕⬊⬊*[h, g, T, d] L → R L. #h #g #G #T #d #R #H0 #L1 #H elim H -L1 /5 width=1 by lleq_sym, SN_intro/ qed-. (* Basic properties *********************************************************) lemma llsxa_intro: ∀h,g,G,L1,T,d. (∀L2. ⦃G, L1⦄ ⊢ ➡*[h, g, T, d] L2 → (L1 ⋕[T, d] L2 → ⊥) → G ⊢ ⋕⬊⬊*[h, g, T, d] L2) → G ⊢ ⋕⬊⬊*[h, g, T, d] L1. /5 width=1 by lleq_sym, SN_intro/ qed. fact llsxa_intro_aux: ∀h,g,G,L1,T,d. (∀L,L2. ⦃G, L⦄ ⊢ ➡*[h, g, T, d] L2 → L1 ⋕[T, d] L → (L1 ⋕[T, d] L2 → ⊥) → G ⊢ ⋕⬊⬊*[h, g, T, d] L2) → G ⊢ ⋕⬊⬊*[h, g, T, d] L1. /4 width=3 by llsxa_intro/ qed-. lemma llsxa_llpxs_trans: ∀h,g,G,L1,T,d. G ⊢ ⋕⬊⬊*[h, g, T, d] L1 → ∀L2. ⦃G, L1⦄ ⊢ ➡*[h, g, T, d] L2 → G ⊢ ⋕⬊⬊*[h, g, T, d] L2. #h #g #G #L1 #T #d #H @(llsxa_ind … H) -L1 #L1 #HL1 #IHL1 #L2 #HL12 @llsxa_intro elim (lleq_dec T L1 L2 d) /4 width=4 by lleq_llpxs_trans, lleq_canc_sn/ qed-. lemma llsxa_intro_llpx: ∀h,g,G,L1,T,d. (∀L2. ⦃G, L1⦄ ⊢ ➡[h, g, T, d] L2 → (L1 ⋕[T, d] L2 → ⊥) → G ⊢ ⋕⬊⬊*[h, g, T, d] L2) → G ⊢ ⋕⬊⬊*[h, g, T, d] L1. #h #g #G #L1 #T #d #IH @llsxa_intro_aux #L #L2 #H @(llpxs_ind_dx … H) -L [ #H destruct #H elim H // | #L0 #L elim (lleq_dec T L1 L d) /4 width=3 by llsxa_llpxs_trans, lleq_llpx_trans/ ] qed. (* Main properties **********************************************************) theorem llsx_llsxa: ∀h,g,G,L,T,d. G ⊢ ⋕⬊*[h, g, T, d] L → G ⊢ ⋕⬊⬊*[h, g, T, d] L. #h #g #G #L #T #d #H @(llsx_ind … H) -L /4 width=1 by llsxa_intro_llpx/ qed. (* Main inversion lemmas ****************************************************) theorem llsxa_inv_llsx: ∀h,g,G,L,T,d. G ⊢ ⋕⬊⬊*[h, g, T, d] L → G ⊢ ⋕⬊*[h, g, T, d] L. #h #g #G #L #T #d #H @(llsxa_ind … H) -L /4 width=1 by llsx_intro, llpx_llpxs/ qed-. (* Advanced properties ******************************************************) lemma llsx_intro_alt: ∀h,g,G,L1,T,d. (∀L2. ⦃G, L1⦄ ⊢ ➡*[h, g, T, d] L2 → (L1 ⋕[T, d] L2 → ⊥) → G ⊢ ⋕⬊*[h, g, T, d] L2) → G ⊢ ⋕⬊*[h, g, T, d] L1. /6 width=1 by llsxa_inv_llsx, llsx_llsxa, llsxa_intro/ qed. lemma llsx_llpxs_trans: ∀h,g,G,L1,T,d. G ⊢ ⋕⬊*[h, g, T, d] L1 → ∀L2. ⦃G, L1⦄ ⊢ ➡*[h, g, T, d] L2 → G ⊢ ⋕⬊*[h, g, T, d] L2. /4 width=3 by llsxa_inv_llsx, llsx_llsxa, llsxa_llpxs_trans/ qed-. (* Advanced eliminators *****************************************************) lemma llsx_ind_alt: ∀h,g,G,T,d. ∀R:predicate lenv. (∀L1. G ⊢ ⋕⬊*[h, g, T, d] L1 → (∀L2. ⦃G, L1⦄ ⊢ ➡*[h, g, T, d] L2 → (L1 ⋕[T, d] L2 → ⊥) → R L2) → R L1 ) → ∀L. G ⊢ ⋕⬊*[h, g, T, d] L → R L. #h #g #G #T #d #R #IH #L #H @(llsxa_ind h g G T d … L) /4 width=1 by llsxa_inv_llsx, llsx_llsxa/ qed-.