(**************************************************************************) (* ___ *) (* ||M|| *) (* ||A|| A project by Andrea Asperti *) (* ||T|| *) (* ||I|| Developers: *) (* ||T|| The HELM team. *) (* ||A|| http://helm.cs.unibo.it *) (* \ / *) (* \ / This file is distributed under the terms of the *) (* v GNU General Public License Version 2 *) (* *) (**************************************************************************) include "basic_2/relocation/ldrop.ma". include "basic_2/relocation/lpx_sn.ma". (* SN POINTWISE EXTENSION OF A CONTEXT-SENSITIVE REALTION FOR TERMS *********) (* alternative definition of lpx_sn *) definition lpx_sn_alt: relation4 bind2 lenv term term → relation lenv ≝ λR,L1,L2. |L1| = |L2| ∧ (∀I1,I2,K1,K2,V1,V2,i. ⇩[i] L1 ≡ K1.ⓑ{I1}V1 → ⇩[i] L2 ≡ K2.ⓑ{I2}V2 → I1 = I2 ∧ R I1 K1 V1 V2 ). (* Basic forward lemmas ******************************************************) lemma lpx_sn_alt_fwd_length: ∀R,L1,L2. lpx_sn_alt R L1 L2 → |L1| = |L2|. #R #L1 #L2 #H elim H // qed-. (* Basic inversion lemmas ***************************************************) lemma lpx_sn_alt_inv_atom1: ∀R,L2. lpx_sn_alt R (⋆) L2 → L2 = ⋆. #R #L2 #H lapply (lpx_sn_alt_fwd_length … H) -H normalize /2 width=1 by length_inv_zero_sn/ qed-. lemma lpx_sn_alt_inv_pair1: ∀R,I,L2,K1,V1. lpx_sn_alt R (K1.ⓑ{I}V1) L2 → ∃∃K2,V2. lpx_sn_alt R K1 K2 & R I K1 V1 V2 & L2 = K2.ⓑ{I}V2. #R #I1 #L2 #K1 #V1 #H elim H -H #H #IH elim (length_inv_pos_sn … H) -H #I2 #K2 #V2 #HK12 #H destruct elim (IH I1 I2 K1 K2 V1 V2 0) // #H #HV12 destruct @(ex3_2_intro … K2 V2) // -HV12 @conj // -HK12 #J1 #J2 #L1 #L2 #W1 #W2 #i #HKL1 #HKL2 elim (IH J1 J2 L1 L2 W1 W2 (i+1)) -IH /2 width=1 by ldrop_drop, conj/ qed-. lemma lpx_sn_alt_inv_atom2: ∀R,L1. lpx_sn_alt R L1 (⋆) → L1 = ⋆. #R #L1 #H lapply (lpx_sn_alt_fwd_length … H) -H normalize /2 width=1 by length_inv_zero_dx/ qed-. lemma lpx_sn_alt_inv_pair2: ∀R,I,L1,K2,V2. lpx_sn_alt R L1 (K2.ⓑ{I}V2) → ∃∃K1,V1. lpx_sn_alt R K1 K2 & R I K1 V1 V2 & L1 = K1.ⓑ{I}V1. #R #I2 #L1 #K2 #V2 #H elim H -H #H #IH elim (length_inv_pos_dx … H) -H #I1 #K1 #V1 #HK12 #H destruct elim (IH I1 I2 K1 K2 V1 V2 0) // #H #HV12 destruct @(ex3_2_intro … K1 V1) // -HV12 @conj // -HK12 #J1 #J2 #L1 #L2 #W1 #W2 #i #HKL1 #HKL2 elim (IH J1 J2 L1 L2 W1 W2 (i+1)) -IH /2 width=1 by ldrop_drop, conj/ qed-. (* Basic properties *********************************************************) lemma lpx_sn_alt_atom: ∀R. lpx_sn_alt R (⋆) (⋆). #R @conj // #I1 #I2 #K1 #K2 #V1 #V2 #i #HLK1 elim (ldrop_inv_atom1 … HLK1) -HLK1 #H destruct qed. lemma lpx_sn_alt_pair: ∀R,I,L1,L2,V1,V2. lpx_sn_alt R L1 L2 → R I L1 V1 V2 → lpx_sn_alt R (L1.ⓑ{I}V1) (L2.ⓑ{I}V2). #R #I #L1 #L2 #V1 #V2 #H #HV12 elim H -H #HL12 #IH @conj normalize // #I1 #I2 #K1 #K2 #W1 #W2 #i @(nat_ind_plus … i) -i [ #HLK1 #HLK2 lapply (ldrop_inv_O2 … HLK1) -HLK1 #H destruct lapply (ldrop_inv_O2 … HLK2) -HLK2 #H destruct /2 width=1 by conj/ | -HL12 -HV12 /3 width=6 by ldrop_inv_drop1/ ] qed. (* Main properties **********************************************************) theorem lpx_sn_lpx_sn_alt: ∀R,L1,L2. lpx_sn R L1 L2 → lpx_sn_alt R L1 L2. #R #L1 #L2 #H elim H -L1 -L2 /2 width=1 by lpx_sn_alt_atom, lpx_sn_alt_pair/ qed. (* Main inversion lemmas ****************************************************) theorem lpx_sn_alt_inv_lpx_sn: ∀R,L1,L2. lpx_sn_alt R L1 L2 → lpx_sn R L1 L2. #R #L1 elim L1 -L1 [ #L2 #H lapply (lpx_sn_alt_inv_atom1 … H) -H // | #L1 #I #V1 #IH #X #H elim (lpx_sn_alt_inv_pair1 … H) -H #L2 #V2 #HL12 #HV12 #H destruct /3 width=1 by lpx_sn_pair/ ] qed-. (* alternative definition of lpx_sn *****************************************) lemma lpx_sn_intro_alt: ∀R,L1,L2. |L1| = |L2| → (∀I1,I2,K1,K2,V1,V2,i. ⇩[i] L1 ≡ K1.ⓑ{I1}V1 → ⇩[i] L2 ≡ K2.ⓑ{I2}V2 → I1 = I2 ∧ R I1 K1 V1 V2 ) → lpx_sn R L1 L2. /4 width=4 by lpx_sn_alt_inv_lpx_sn, conj/ qed. lemma lpx_sn_inv_alt: ∀R,L1,L2. lpx_sn R L1 L2 → |L1| = |L2| ∧ ∀I1,I2,K1,K2,V1,V2,i. ⇩[i] L1 ≡ K1.ⓑ{I1}V1 → ⇩[i] L2 ≡ K2.ⓑ{I2}V2 → I1 = I2 ∧ R I1 K1 V1 V2. #R #L1 #L2 #H lapply (lpx_sn_lpx_sn_alt … H) -H #H elim H -H /3 width=4 by conj/ qed-.