(**************************************************************************) (* ___ *) (* ||M|| *) (* ||A|| A project by Andrea Asperti *) (* ||T|| *) (* ||I|| Developers: *) (* ||T|| The HELM team. *) (* ||A|| http://helm.cs.unibo.it *) (* \ / *) (* \ / This file is distributed under the terms of the *) (* v GNU General Public License Version 2 *) (* *) (**************************************************************************) include "ground_2/xoa/ex_4_3.ma". include "ground_2/xoa/ex_5_4.ma". include "ground_2/xoa/or_3.ma". include "ground_2/ynat/ynat_minus_sn.ma". include "ground_2/ynat/ynat_minus_dx.ma". include "basic_2A/notation/relations/psubst_6.ma". include "basic_2A/grammar/genv.ma". include "basic_2A/substitution/lsuby.ma". (* CONTEXT-SENSITIVE EXTENDED ORDINARY SUBSTITUTION FOR TERMS ***************) (* activate genv *) inductive cpy: ynat → ynat → relation4 genv lenv term term ≝ | cpy_atom : ∀I,G,L,l,m. cpy l m G L (⓪{I}) (⓪{I}) | cpy_subst: ∀I,G,L,K,V,W,i,l,m. l ≤ yinj i → i < l+m → ⬇[i] L ≡ K.ⓑ{I}V → ⬆[0, i+1] V ≡ W → cpy l m G L (#i) W | cpy_bind : ∀a,I,G,L,V1,V2,T1,T2,l,m. cpy l m G L V1 V2 → cpy (↑l) m G (L.ⓑ{I}V1) T1 T2 → cpy l m G L (ⓑ{a,I}V1.T1) (ⓑ{a,I}V2.T2) | cpy_flat : ∀I,G,L,V1,V2,T1,T2,l,m. cpy l m G L V1 V2 → cpy l m G L T1 T2 → cpy l m G L (ⓕ{I}V1.T1) (ⓕ{I}V2.T2) . interpretation "context-sensitive extended ordinary substritution (term)" 'PSubst G L T1 l m T2 = (cpy l m G L T1 T2). (* Basic properties *********************************************************) lemma lsuby_cpy_trans: ∀G,l,m. lsub_trans … (cpy l m G) (lsuby l m). #G #l #m #L1 #T1 #T2 #H elim H -G -L1 -T1 -T2 -l -m [ // | #I #G #L1 #K1 #V #W #i #l #m #Hli #Hilm #HLK1 #HVW #L2 #HL12 elim (lsuby_drop_trans_be … HL12 … HLK1) -HL12 -HLK1 /2 width=5 by cpy_subst/ | /4 width=1 by lsuby_succ, cpy_bind/ | /3 width=1 by cpy_flat/ ] qed-. lemma cpy_refl: ∀G,T,L,l,m. ⦃G, L⦄ ⊢ T ▶[l, m] T. #G #T elim T -T // * /2 width=1 by cpy_bind, cpy_flat/ qed. (* Basic_1: was: subst1_ex *) lemma cpy_full: ∀I,G,K,V,T1,L,l. ⬇[l] L ≡ K.ⓑ{I}V → ∃∃T2,T. ⦃G, L⦄ ⊢ T1 ▶[l, 1] T2 & ⬆[l, 1] T ≡ T2. #I #G #K #V #T1 elim T1 -T1 [ * #i #L #l #HLK /2 width=4 by lift_sort, lift_gref, ex2_2_intro/ elim (lt_or_eq_or_gt i l) #Hil /3 width=4 by lift_lref_ge_minus, lift_lref_lt, ex2_2_intro/ destruct elim (lift_total V 0 (i+1)) #W #HVW elim (lift_split … HVW i i) /4 width=5 by cpy_subst, ylt_inj, ex2_2_intro/ | * [ #a ] #J #W1 #U1 #IHW1 #IHU1 #L #l #HLK elim (IHW1 … HLK) -IHW1 #W2 #W #HW12 #HW2 [ elim (IHU1 (L.ⓑ{J}W1) (l+1)) -IHU1 /3 width=9 by cpy_bind, drop_drop, lift_bind, ex2_2_intro/ | elim (IHU1 … HLK) -IHU1 -HLK /3 width=8 by cpy_flat, lift_flat, ex2_2_intro/ ] ] qed-. lemma cpy_weak: ∀G,L,T1,T2,l1,m1. ⦃G, L⦄ ⊢ T1 ▶[l1, m1] T2 → ∀l2,m2. l2 ≤ l1 → l1 + m1 ≤ l2 + m2 → ⦃G, L⦄ ⊢ T1 ▶[l2, m2] T2. #G #L #T1 #T2 #l1 #m1 #H elim H -G -L -T1 -T2 -l1 -m1 // [ /3 width=5 by cpy_subst, ylt_yle_trans, yle_trans/ | /4 width=3 by cpy_bind, ylt_yle_trans, yle_succ/ | /3 width=1 by cpy_flat/ ] qed-. lemma cpy_weak_top: ∀G,L,T1,T2,l,m. ⦃G, L⦄ ⊢ T1 ▶[l, m] T2 → ⦃G, L⦄ ⊢ T1 ▶[l, |L| - l] T2. #G #L #T1 #T2 #l #m #H elim H -G -L -T1 -T2 -l -m // [ #I #G #L #K #V #W #i #l #m #Hli #_ #HLK #HVW lapply (drop_fwd_length_lt2 … HLK) #Hil lapply (ylt_inj … Hil) -Hil #Hil lapply (yle_ylt_trans … Hil Hli) #Hl @(cpy_subst … Hli … HLK HVW) yplus_SO2 >yplus_succ1 #T #HT1 #HT2 lapply (lsuby_cpy_trans … HT2 (L.ⓑ{I}V) ?) -HT2 /3 width=5 by lsuby_succ, ex2_intro, cpy_bind/ | #I #G #L #V1 #V2 #T1 #T2 #l #m #_ #_ #IHV12 #IHT12 #i #Hilm elim (IHV12 i) -IHV12 // elim (IHT12 i) -IHT12 // -Hilm /3 width=5 by ex2_intro, cpy_flat/ ] qed-. lemma cpy_split_down: ∀G,L,T1,T2,l,m. ⦃G, L⦄ ⊢ T1 ▶[l, m] T2 → ∀i. i ≤ l + m → ∃∃T. ⦃G, L⦄ ⊢ T1 ▶[i, l+m-i] T & ⦃G, L⦄ ⊢ T ▶[l, i-l] T2. #G #L #T1 #T2 #l #m #H elim H -G -L -T1 -T2 -l -m [ /2 width=3 by ex2_intro/ | #I #G #L #K #V #W #i #l #m #Hli #Hilm #HLK #HVW #j #Hjlm elim (ylt_split i j) [ -Hilm -Hjlm | -Hli ] /4 width=9 by cpy_subst, ylt_yle_trans, ex2_intro/ | #a #I #G #L #V1 #V2 #T1 #T2 #l #m #_ #_ #IHV12 #IHT12 #i #Hilm elim (IHV12 i) -IHV12 // #V elim (IHT12 (i+1)) -IHT12 /2 width=1 by yle_succ/ -Hilm >yplus_SO2 >yplus_succ1 #T #HT1 #HT2 lapply (lsuby_cpy_trans … HT2 (L.ⓑ{I}V) ?) -HT2 /3 width=5 by lsuby_succ, ex2_intro, cpy_bind/ | #I #G #L #V1 #V2 #T1 #T2 #l #m #_ #_ #IHV12 #IHT12 #i #Hilm elim (IHV12 i) -IHV12 // elim (IHT12 i) -IHT12 // -Hilm /3 width=5 by ex2_intro, cpy_flat/ ] qed-. (* Basic forward lemmas *****************************************************) lemma cpy_fwd_up: ∀G,L,U1,U2,lt,mt. ⦃G, L⦄ ⊢ U1 ▶[lt, mt] U2 → ∀T1,l,m. ⬆[l, m] T1 ≡ U1 → l ≤ lt → l + m ≤ lt + mt → ∃∃T2. ⦃G, L⦄ ⊢ U1 ▶[l+m, lt+mt-(l+m)] U2 & ⬆[l, m] T2 ≡ U2. #G #L #U1 #U2 #lt #mt #H elim H -G -L -U1 -U2 -lt -mt [ * #i #G #L #lt #mt #T1 #l #m #H #_ [ lapply (lift_inv_sort2 … H) -H #H destruct /2 width=3 by ex2_intro/ | elim (lift_inv_lref2 … H) -H * #Hil #H destruct /3 width=3 by lift_lref_ge_minus, lift_lref_lt, ex2_intro/ | lapply (lift_inv_gref2 … H) -H #H destruct /2 width=3 by ex2_intro/ ] | #I #G #L #K #V #W #i #lt #mt #Hlti #Hilmt #HLK #HVW #T1 #l #m #H #Hllt #Hlmlmt elim (lift_inv_lref2 … H) -H * #Hil #H destruct [ -V -Hilmt -Hlmlmt | -Hlti -Hllt ] [ elim (ylt_yle_false … Hllt) -Hllt /3 width=3 by yle_ylt_trans, ylt_inj/ | elim (le_inv_plus_l … Hil) #Hlim #Hmi elim (lift_split … HVW l (i-m+1) ? ? ?) [2,3,4: /2 width=1 by le_S_S, le_S/ ] -Hlim #T2 #_ >plus_minus // ymax_pre_sn_comm // (**) (* explicit constructor *) ] | #a #I #G #L #W1 #W2 #U1 #U2 #lt #mt #_ #_ #IHW12 #IHU12 #X #l #m #H #Hllt #Hlmlmt elim (lift_inv_bind2 … H) -H #V1 #T1 #HVW1 #HTU1 #H destruct elim (IHW12 … HVW1) -V1 -IHW12 // elim (IHU12 … HTU1) -T1 -IHU12 /2 width=1 by yle_succ/ yplus_SO2 >yplus_succ1 >yplus_succ1 /3 width=2 by cpy_bind, lift_bind, ex2_intro/ | #I #G #L #W1 #W2 #U1 #U2 #lt #mt #_ #_ #IHW12 #IHU12 #X #l #m #H #Hllt #Hlmlmt elim (lift_inv_flat2 … H) -H #V1 #T1 #HVW1 #HTU1 #H destruct elim (IHW12 … HVW1) -V1 -IHW12 // elim (IHU12 … HTU1) -T1 -IHU12 /3 width=2 by cpy_flat, lift_flat, ex2_intro/ ] qed-. lemma cpy_fwd_tw: ∀G,L,T1,T2,l,m. ⦃G, L⦄ ⊢ T1 ▶[l, m] T2 → ♯{T1} ≤ ♯{T2}. #G #L #T1 #T2 #l #m #H elim H -G -L -T1 -T2 -l -m normalize /3 width=1 by monotonic_le_plus_l, le_plus/ qed-. (* Basic inversion lemmas ***************************************************) fact cpy_inv_atom1_aux: ∀G,L,T1,T2,l,m. ⦃G, L⦄ ⊢ T1 ▶[l, m] T2 → ∀J. T1 = ⓪{J} → T2 = ⓪{J} ∨ ∃∃I,K,V,i. l ≤ yinj i & i < l + m & ⬇[i] L ≡ K.ⓑ{I}V & ⬆[O, i+1] V ≡ T2 & J = LRef i. #G #L #T1 #T2 #l #m * -G -L -T1 -T2 -l -m [ #I #G #L #l #m #J #H destruct /2 width=1 by or_introl/ | #I #G #L #K #V #T2 #i #l #m #Hli #Hilm #HLK #HVT2 #J #H destruct /3 width=9 by ex5_4_intro, or_intror/ | #a #I #G #L #V1 #V2 #T1 #T2 #l #m #_ #_ #J #H destruct | #I #G #L #V1 #V2 #T1 #T2 #l #m #_ #_ #J #H destruct ] qed-. lemma cpy_inv_atom1: ∀I,G,L,T2,l,m. ⦃G, L⦄ ⊢ ⓪{I} ▶[l, m] T2 → T2 = ⓪{I} ∨ ∃∃J,K,V,i. l ≤ yinj i & i < l + m & ⬇[i] L ≡ K.ⓑ{J}V & ⬆[O, i+1] V ≡ T2 & I = LRef i. /2 width=4 by cpy_inv_atom1_aux/ qed-. (* Basic_1: was: subst1_gen_sort *) lemma cpy_inv_sort1: ∀G,L,T2,k,l,m. ⦃G, L⦄ ⊢ ⋆k ▶[l, m] T2 → T2 = ⋆k. #G #L #T2 #k #l #m #H elim (cpy_inv_atom1 … H) -H // * #I #K #V #i #_ #_ #_ #_ #H destruct qed-. (* Basic_1: was: subst1_gen_lref *) lemma cpy_inv_lref1: ∀G,L,T2,i,l,m. ⦃G, L⦄ ⊢ #i ▶[l, m] T2 → T2 = #i ∨ ∃∃I,K,V. l ≤ i & i < l + m & ⬇[i] L ≡ K.ⓑ{I}V & ⬆[O, i+1] V ≡ T2. #G #L #T2 #i #l #m #H elim (cpy_inv_atom1 … H) -H /2 width=1 by or_introl/ * #I #K #V #j #Hlj #Hjlm #HLK #HVT2 #H destruct /3 width=5 by ex4_3_intro, or_intror/ qed-. lemma cpy_inv_gref1: ∀G,L,T2,p,l,m. ⦃G, L⦄ ⊢ §p ▶[l, m] T2 → T2 = §p. #G #L #T2 #p #l #m #H elim (cpy_inv_atom1 … H) -H // * #I #K #V #i #_ #_ #_ #_ #H destruct qed-. fact cpy_inv_bind1_aux: ∀G,L,U1,U2,l,m. ⦃G, L⦄ ⊢ U1 ▶[l, m] U2 → ∀a,I,V1,T1. U1 = ⓑ{a,I}V1.T1 → ∃∃V2,T2. ⦃G, L⦄ ⊢ V1 ▶[l, m] V2 & ⦃G, L. ⓑ{I}V1⦄ ⊢ T1 ▶[↑l, m] T2 & U2 = ⓑ{a,I}V2.T2. #G #L #U1 #U2 #l #m * -G -L -U1 -U2 -l -m [ #I #G #L #l #m #b #J #W1 #U1 #H destruct | #I #G #L #K #V #W #i #l #m #_ #_ #_ #_ #b #J #W1 #U1 #H destruct | #a #I #G #L #V1 #V2 #T1 #T2 #l #m #HV12 #HT12 #b #J #W1 #U1 #H destruct /2 width=5 by ex3_2_intro/ | #I #G #L #V1 #V2 #T1 #T2 #l #m #_ #_ #b #J #W1 #U1 #H destruct ] qed-. lemma cpy_inv_bind1: ∀a,I,G,L,V1,T1,U2,l,m. ⦃G, L⦄ ⊢ ⓑ{a,I} V1. T1 ▶[l, m] U2 → ∃∃V2,T2. ⦃G, L⦄ ⊢ V1 ▶[l, m] V2 & ⦃G, L.ⓑ{I}V1⦄ ⊢ T1 ▶[↑l, m] T2 & U2 = ⓑ{a,I}V2.T2. /2 width=3 by cpy_inv_bind1_aux/ qed-. fact cpy_inv_flat1_aux: ∀G,L,U1,U2,l,m. ⦃G, L⦄ ⊢ U1 ▶[l, m] U2 → ∀I,V1,T1. U1 = ⓕ{I}V1.T1 → ∃∃V2,T2. ⦃G, L⦄ ⊢ V1 ▶[l, m] V2 & ⦃G, L⦄ ⊢ T1 ▶[l, m] T2 & U2 = ⓕ{I}V2.T2. #G #L #U1 #U2 #l #m * -G -L -U1 -U2 -l -m [ #I #G #L #l #m #J #W1 #U1 #H destruct | #I #G #L #K #V #W #i #l #m #_ #_ #_ #_ #J #W1 #U1 #H destruct | #a #I #G #L #V1 #V2 #T1 #T2 #l #m #_ #_ #J #W1 #U1 #H destruct | #I #G #L #V1 #V2 #T1 #T2 #l #m #HV12 #HT12 #J #W1 #U1 #H destruct /2 width=5 by ex3_2_intro/ ] qed-. lemma cpy_inv_flat1: ∀I,G,L,V1,T1,U2,l,m. ⦃G, L⦄ ⊢ ⓕ{I} V1. T1 ▶[l, m] U2 → ∃∃V2,T2. ⦃G, L⦄ ⊢ V1 ▶[l, m] V2 & ⦃G, L⦄ ⊢ T1 ▶[l, m] T2 & U2 = ⓕ{I}V2.T2. /2 width=3 by cpy_inv_flat1_aux/ qed-. fact cpy_inv_refl_O2_aux: ∀G,L,T1,T2,l,m. ⦃G, L⦄ ⊢ T1 ▶[l, m] T2 → m = 0 → T1 = T2. #G #L #T1 #T2 #l #m #H elim H -G -L -T1 -T2 -l -m [ // | #I #G #L #K #V #W #i #l #m #Hli #Hilm #_ #_ #H destruct elim (ylt_yle_false … Hli) -Hli // | /3 width=1 by eq_f2/ | /3 width=1 by eq_f2/ ] qed-. lemma cpy_inv_refl_O2: ∀G,L,T1,T2,l. ⦃G, L⦄ ⊢ T1 ▶[l, 0] T2 → T1 = T2. /2 width=6 by cpy_inv_refl_O2_aux/ qed-. (* Basic_1: was: subst1_gen_lift_eq *) lemma cpy_inv_lift1_eq: ∀G,T1,U1,l,m. ⬆[l, m] T1 ≡ U1 → ∀L,U2. ⦃G, L⦄ ⊢ U1 ▶[l, m] U2 → U1 = U2. #G #T1 #U1 #l #m #HTU1 #L #U2 #HU12 elim (cpy_fwd_up … HU12 … HTU1) -HU12 -HTU1 /2 width=4 by cpy_inv_refl_O2/ qed-. (* Basic_1: removed theorems 25: subst0_gen_sort subst0_gen_lref subst0_gen_head subst0_gen_lift_lt subst0_gen_lift_false subst0_gen_lift_ge subst0_refl subst0_trans subst0_lift_lt subst0_lift_ge subst0_lift_ge_S subst0_lift_ge_s subst0_subst0 subst0_subst0_back subst0_weight_le subst0_weight_lt subst0_confluence_neq subst0_confluence_eq subst0_tlt_head subst0_confluence_lift subst0_tlt subst1_head subst1_gen_head subst1_lift_S subst1_confluence_lift *)