(**************************************************************************) (* ___ *) (* ||M|| *) (* ||A|| A project by Andrea Asperti *) (* ||T|| *) (* ||I|| Developers: *) (* ||T|| The HELM team. *) (* ||A|| http://helm.cs.unibo.it *) (* \ / *) (* \ / This file is distributed under the terms of the *) (* v GNU General Public License Version 2 *) (* *) (**************************************************************************) include "basic_2A/notation/relations/psubststar_6.ma". include "basic_2A/substitution/cpy.ma". (* CONTEXT-SENSITIVE EXTENDED MULTIPLE SUBSTITUTION FOR TERMS ***************) definition cpys: ynat → ynat → relation4 genv lenv term term ≝ λl,m,G. LTC … (cpy l m G). interpretation "context-sensitive extended multiple substritution (term)" 'PSubstStar G L T1 l m T2 = (cpys l m G L T1 T2). (* Basic eliminators ********************************************************) lemma cpys_ind: ∀G,L,T1,l,m. ∀R:predicate term. R T1 → (∀T,T2. ⦃G, L⦄ ⊢ T1 ▶*[l, m] T → ⦃G, L⦄ ⊢ T ▶[l, m] T2 → R T → R T2) → ∀T2. ⦃G, L⦄ ⊢ T1 ▶*[l, m] T2 → R T2. #G #L #T1 #l #m #R #HT1 #IHT1 #T2 #HT12 @(TC_star_ind … HT1 IHT1 … HT12) // qed-. lemma cpys_ind_dx: ∀G,L,T2,l,m. ∀R:predicate term. R T2 → (∀T1,T. ⦃G, L⦄ ⊢ T1 ▶[l, m] T → ⦃G, L⦄ ⊢ T ▶*[l, m] T2 → R T → R T1) → ∀T1. ⦃G, L⦄ ⊢ T1 ▶*[l, m] T2 → R T1. #G #L #T2 #l #m #R #HT2 #IHT2 #T1 #HT12 @(TC_star_ind_dx … HT2 IHT2 … HT12) // qed-. (* Basic properties *********************************************************) lemma cpy_cpys: ∀G,L,T1,T2,l,m. ⦃G, L⦄ ⊢ T1 ▶[l, m] T2 → ⦃G, L⦄ ⊢ T1 ▶*[l, m] T2. /2 width=1 by inj/ qed. lemma cpys_strap1: ∀G,L,T1,T,T2,l,m. ⦃G, L⦄ ⊢ T1 ▶*[l, m] T → ⦃G, L⦄ ⊢ T ▶[l, m] T2 → ⦃G, L⦄ ⊢ T1 ▶*[l, m] T2. normalize /2 width=3 by step/ qed-. lemma cpys_strap2: ∀G,L,T1,T,T2,l,m. ⦃G, L⦄ ⊢ T1 ▶[l, m] T → ⦃G, L⦄ ⊢ T ▶*[l, m] T2 → ⦃G, L⦄ ⊢ T1 ▶*[l, m] T2. normalize /2 width=3 by TC_strap/ qed-. lemma lsuby_cpys_trans: ∀G,l,m. lsub_trans … (cpys l m G) (lsuby l m). /3 width=5 by lsuby_cpy_trans, LTC_lsub_trans/ qed-. lemma cpys_refl: ∀G,L,l,m. reflexive … (cpys l m G L). /2 width=1 by cpy_cpys/ qed. lemma cpys_bind: ∀G,L,V1,V2,l,m. ⦃G, L⦄ ⊢ V1 ▶*[l, m] V2 → ∀I,T1,T2. ⦃G, L.ⓑ{I}V1⦄ ⊢ T1 ▶*[↑l, m] T2 → ∀a. ⦃G, L⦄ ⊢ ⓑ{a,I}V1.T1 ▶*[l, m] ⓑ{a,I}V2.T2. #G #L #V1 #V2 #l #m #HV12 @(cpys_ind … HV12) -V2 [ #I #T1 #T2 #HT12 @(cpys_ind … HT12) -T2 /3 width=5 by cpys_strap1, cpy_bind/ | /3 width=5 by cpys_strap1, cpy_bind/ ] qed. lemma cpys_flat: ∀G,L,V1,V2,l,m. ⦃G, L⦄ ⊢ V1 ▶*[l, m] V2 → ∀T1,T2. ⦃G, L⦄ ⊢ T1 ▶*[l, m] T2 → ∀I. ⦃G, L⦄ ⊢ ⓕ{I}V1.T1 ▶*[l, m] ⓕ{I}V2.T2. #G #L #V1 #V2 #l #m #HV12 @(cpys_ind … HV12) -V2 [ #T1 #T2 #HT12 @(cpys_ind … HT12) -T2 /3 width=5 by cpys_strap1, cpy_flat/ | /3 width=5 by cpys_strap1, cpy_flat/ qed. lemma cpys_weak: ∀G,L,T1,T2,l1,m1. ⦃G, L⦄ ⊢ T1 ▶*[l1, m1] T2 → ∀l2,m2. l2 ≤ l1 → l1 + m1 ≤ l2 + m2 → ⦃G, L⦄ ⊢ T1 ▶*[l2, m2] T2. #G #L #T1 #T2 #l1 #m1 #H #l1 #l2 #Hl21 #Hlm12 @(cpys_ind … H) -T2 /3 width=7 by cpys_strap1, cpy_weak/ qed-. lemma cpys_weak_top: ∀G,L,T1,T2,l,m. ⦃G, L⦄ ⊢ T1 ▶*[l, m] T2 → ⦃G, L⦄ ⊢ T1 ▶*[l, |L| - l] T2. #G #L #T1 #T2 #l #m #H @(cpys_ind … H) -T2 /3 width=4 by cpys_strap1, cpy_weak_top/ qed-. lemma cpys_weak_full: ∀G,L,T1,T2,l,m. ⦃G, L⦄ ⊢ T1 ▶*[l, m] T2 → ⦃G, L⦄ ⊢ T1 ▶*[0, |L|] T2. #G #L #T1 #T2 #l #m #H @(cpys_ind … H) -T2 /3 width=5 by cpys_strap1, cpy_weak_full/ qed-. (* Basic forward lemmas *****************************************************) lemma cpys_fwd_up: ∀G,L,U1,U2,lt,mt. ⦃G, L⦄ ⊢ U1 ▶*[lt, mt] U2 → ∀T1,l,m. ⬆[l, m] T1 ≡ U1 → l ≤ lt → l + m ≤ lt + mt → ∃∃T2. ⦃G, L⦄ ⊢ U1 ▶*[l+m, lt+mt-(l+m)] U2 & ⬆[l, m] T2 ≡ U2. #G #L #U1 #U2 #lt #mt #H #T1 #l #m #HTU1 #Hllt #Hlmlmt @(cpys_ind … H) -U2 [ /2 width=3 by ex2_intro/ | -HTU1 #U #U2 #_ #HU2 * #T #HU1 #HTU elim (cpy_fwd_up … HU2 … HTU) -HU2 -HTU /3 width=3 by cpys_strap1, ex2_intro/ ] qed-. lemma cpys_fwd_tw: ∀G,L,T1,T2,l,m. ⦃G, L⦄ ⊢ T1 ▶*[l, m] T2 → ♯{T1} ≤ ♯{T2}. #G #L #T1 #T2 #l #m #H @(cpys_ind … H) -T2 // #T #T2 #_ #HT2 #IHT1 lapply (cpy_fwd_tw … HT2) -HT2 /2 width=3 by transitive_le/ qed-. (* Basic inversion lemmas ***************************************************) (* Note: this can be derived from cpys_inv_atom1 *) lemma cpys_inv_sort1: ∀G,L,T2,k,l,m. ⦃G, L⦄ ⊢ ⋆k ▶*[l, m] T2 → T2 = ⋆k. #G #L #T2 #k #l #m #H @(cpys_ind … H) -T2 // #T #T2 #_ #HT2 #IHT1 destruct >(cpy_inv_sort1 … HT2) -HT2 // qed-. (* Note: this can be derived from cpys_inv_atom1 *) lemma cpys_inv_gref1: ∀G,L,T2,p,l,m. ⦃G, L⦄ ⊢ §p ▶*[l, m] T2 → T2 = §p. #G #L #T2 #p #l #m #H @(cpys_ind … H) -T2 // #T #T2 #_ #HT2 #IHT1 destruct >(cpy_inv_gref1 … HT2) -HT2 // qed-. lemma cpys_inv_bind1: ∀a,I,G,L,V1,T1,U2,l,m. ⦃G, L⦄ ⊢ ⓑ{a,I}V1.T1 ▶*[l, m] U2 → ∃∃V2,T2. ⦃G, L⦄ ⊢ V1 ▶*[l, m] V2 & ⦃G, L.ⓑ{I}V1⦄ ⊢ T1 ▶*[↑l, m] T2 & U2 = ⓑ{a,I}V2.T2. #a #I #G #L #V1 #T1 #U2 #l #m #H @(cpys_ind … H) -U2 [ /2 width=5 by ex3_2_intro/ | #U #U2 #_ #HU2 * #V #T #HV1 #HT1 #H destruct elim (cpy_inv_bind1 … HU2) -HU2 #V2 #T2 #HV2 #HT2 #H lapply (lsuby_cpy_trans … HT2 (L.ⓑ{I}V1) ?) -HT2 /3 width=5 by cpys_strap1, lsuby_succ, ex3_2_intro/ ] qed-. lemma cpys_inv_flat1: ∀I,G,L,V1,T1,U2,l,m. ⦃G, L⦄ ⊢ ⓕ{I}V1.T1 ▶*[l, m] U2 → ∃∃V2,T2. ⦃G, L⦄ ⊢ V1 ▶*[l, m] V2 & ⦃G, L⦄ ⊢ T1 ▶*[l, m] T2 & U2 = ⓕ{I}V2.T2. #I #G #L #V1 #T1 #U2 #l #m #H @(cpys_ind … H) -U2 [ /2 width=5 by ex3_2_intro/ | #U #U2 #_ #HU2 * #V #T #HV1 #HT1 #H destruct elim (cpy_inv_flat1 … HU2) -HU2 /3 width=5 by cpys_strap1, ex3_2_intro/ ] qed-. lemma cpys_inv_refl_O2: ∀G,L,T1,T2,l. ⦃G, L⦄ ⊢ T1 ▶*[l, 0] T2 → T1 = T2. #G #L #T1 #T2 #l #H @(cpys_ind … H) -T2 // #T #T2 #_ #HT2 #IHT1 <(cpy_inv_refl_O2 … HT2) -HT2 // qed-. lemma cpys_inv_lift1_eq: ∀G,L,U1,U2. ∀l,m:nat. ⦃G, L⦄ ⊢ U1 ▶*[l, m] U2 → ∀T1. ⬆[l, m] T1 ≡ U1 → U1 = U2. #G #L #U1 #U2 #l #m #H #T1 #HTU1 @(cpys_ind … H) -U2 /2 width=7 by cpy_inv_lift1_eq/ qed-.