(* Equalities ***************************************************************) lemma minus_plus_m_m_commutative: ∀n,m:nat. n = m + n - m. // qed-. lemma plus_minus_m_m_commutative (n) (m): m ≤ n → n = m+(n-m). /2 width=1 by plus_minus_associative/ qed-. lemma plus_to_minus_2: ∀m1,m2,n1,n2. n1 ≤ m1 → n2 ≤ m2 → m1+n2 = m2+n1 → m1-n1 = m2-n2. #m1 #m2 #n1 #n2 #H1 #H2 #H @plus_to_minus >plus_minus_associative // qed-. (* Note: uses minus_minus_comm, minus_plus_m_m, commutative_plus, plus_minus *) lemma plus_minus_minus_be: ∀x,y,z. y ≤ z → z ≤ x → (x - z) + (z - y) = x - y. #x #z #y #Hzy #Hyx >plus_minus // >commutative_plus >plus_minus // qed-. lemma lt_succ_pred: ∀m,n. n < m → m = ↑↓m. #m #n #Hm >S_pred /2 width=2 by ltn_to_ltO/ qed-. fact plus_minus_minus_be_aux: ∀i,x,y,z. y ≤ z → z ≤ x → i = z - y → x - z + i = x - y. /2 width=1 by plus_minus_minus_be/ qed-. lemma le_plus_minus: ∀m,n,p. p ≤ n → m + n - p = m + (n - p). /2 by plus_minus/ qed-. lemma le_plus_minus_comm: ∀n,m,p. p ≤ m → m + n - p = m - p + n. /2 by plus_minus/ qed-. lemma minus_minus_comm3: ∀n,x,y,z. n-x-y-z = n-y-z-x. // qed. (* Properties ***************************************************************) lemma eq_nat_dec: ∀n1,n2:nat. Decidable (n1 = n2). #n1 elim n1 -n1 [| #n1 #IHn1 ] * [2,4: #n2 ] [1,4: @or_intror #H destruct | elim (IHn1 n2) -IHn1 /3 width=1 by or_intror, or_introl/ | /2 width=1 by or_introl/ ] qed-. lemma lt_or_eq_or_gt: ∀m,n. ∨∨ m < n | n = m | n < m. #m #n elim (lt_or_ge m n) /2 width=1 by or3_intro0/ #H elim H -m /2 width=1 by or3_intro1/ #m #Hm * /3 width=1 by not_le_to_lt, le_S_S, or3_intro2/ qed-. lemma monotonic_le_minus_l2: ∀x1,x2,y,z. x1 ≤ x2 → x1 - y - z ≤ x2 - y - z. /3 width=1 by monotonic_le_minus_l/ qed. lemma minus_le_trans_sn: ∀x1,x2. x1 ≤ x2 → ∀x. x1-x ≤ x2. /2 width=3 by transitive_le/ qed. lemma le_plus_to_minus_l: ∀a,b,c. a + b ≤ c → b ≤ c-a. /2 width=1 by le_plus_to_minus_r/ qed-. lemma le_plus_to_minus_comm: ∀n,m,p. n ≤ p+m → n-p ≤ m. /2 width=1 by le_plus_to_minus/ qed-. lemma le_inv_S1: ∀m,n. ↑m ≤ n → ∃∃p. m ≤ p & ↑p = n. #m * [ #H lapply (le_n_O_to_eq … H) -H #H destruct | /3 width=3 by monotonic_pred, ex2_intro/ ] qed-. (* Note: this might interfere with nat.ma *) lemma monotonic_lt_pred: ∀m,n. m < n → 0 < m → pred m < pred n. #m #n #Hmn #Hm whd >(S_pred … Hm) @le_S_S_to_le >S_pred /2 width=3 by transitive_lt/ qed. lemma lt_S_S: ∀x,y. x < y → ↑x < ↑y. /2 width=1 by le_S_S/ qed. lemma lt_S: ∀n,m. n < m → n < ↑m. /2 width=1 by le_S/ qed. lemma monotonic_lt_minus_r: ∀p,q,n. q < n -> q < p → n-p < n-q. #p #q #n #Hn #H lapply (monotonic_le_minus_r … n H) -H #H @(le_to_lt_to_lt … H) -H /2 width=1 by lt_plus_to_minus/ qed. (* Inversion & forward lemmas ***********************************************) lemma lt_refl_false: ∀n. n < n → ⊥. #n #H elim (lt_to_not_eq … H) -H /2 width=1 by/ qed-. lemma lt_zero_false: ∀n. n < 0 → ⊥. #n #H elim (lt_to_not_le … H) -H /2 width=1 by/ qed-. lemma lt_le_false: ∀x,y. x < y → y ≤ x → ⊥. /3 width=4 by lt_refl_false, lt_to_le_to_lt/ qed-. lemma le_dec (n) (m): Decidable (n≤m). #n elim n -n [ /2 width=1 by or_introl/ ] #n #IH * [ /3 width=2 by lt_zero_false, or_intror/ ] #m elim (IH m) -IH [ /3 width=1 by or_introl, le_S_S/ | /4 width=1 by or_intror, le_S_S_to_le/ ] qed-. lemma succ_inv_refl_sn: ∀x. ↑x = x → ⊥. #x #H @(lt_le_false x (↑x)) // qed-. lemma le_plus_xSy_O_false: ∀x,y. x + S y ≤ 0 → ⊥. #x #y #H lapply (le_n_O_to_eq … H) -H H -H /2 width=2 by le_plus_to_le/ qed-. lemma plus2_le_sn_dx: ∀m1,m2,n1,n2. m1 + n1 = n2 + m2 → m1 ≤ m2 → n2 ≤ n1. /2 width=4 by plus2_le_sn_sn/ qed-. lemma plus2_le_dx_sn: ∀m1,m2,n1,n2. n1 + m1 = m2 + n2 → m1 ≤ m2 → n2 ≤ n1. /2 width=4 by plus2_le_sn_sn/ qed-. lemma plus2_le_dx_dx: ∀m1,m2,n1,n2. n1 + m1 = n2 + m2 → m1 ≤ m2 → n2 ≤ n1. /2 width=4 by plus2_le_sn_sn/ qed-. lemma lt_S_S_to_lt: ∀x,y. ↑x < ↑y → x < y. /2 width=1 by le_S_S_to_le/ qed-. (* Note this should go in nat.ma *) lemma discr_x_minus_xy: ∀x,y. x = x - y → x = 0 ∨ y = 0. #x @(nat_ind_plus … x) -x /2 width=1 by or_introl/ #x #_ #y @(nat_ind_plus … y) -y /2 width=1 by or_intror/ #y #_ >minus_plus_plus_l #H lapply (discr_plus_xy_minus_xz … H) -H #H destruct qed-. lemma lt_inv_O1: ∀n. 0 < n → ∃m. ↑m = n. * /2 width=2 by ex_intro/ #H cases (lt_le_false … H) -H // qed-. lemma lt_inv_S1: ∀m,n. ↑m < n → ∃∃p. m < p & ↑p = n. #m * /3 width=3 by lt_S_S_to_lt, ex2_intro/ #H cases (lt_le_false … H) -H // qed-. lemma lt_inv_gen: ∀y,x. x < y → ∃∃z. x ≤ z & ↑z = y. * /3 width=3 by le_S_S_to_le, ex2_intro/ #x #H elim (lt_le_false … H) -H // qed-. lemma plus_inv_O3: ∀x,y. x + y = 0 → x = 0 ∧ y = 0. /2 width=1 by plus_le_0/ qed-. lemma plus_inv_S3_sn: ∀x1,x2,x3. x1+x2 = ↑x3 → ∨∨ ∧∧ x1 = 0 & x2 = ↑x3 | ∃∃y1. x1 = ↑y1 & y1 + x2 = x3. * /3 width=1 by or_introl, conj/ #x1 #x2 #x3