(**************************************************************************) (* ___ *) (* ||M|| *) (* ||A|| A project by Andrea Asperti *) (* ||T|| *) (* ||I|| Developers: *) (* ||T|| The HELM team. *) (* ||A|| http://helm.cs.unibo.it *) (* \ / *) (* \ / This file is distributed under the terms of the *) (* v GNU General Public License Version 2 *) (* *) (**************************************************************************) include "ground_2/notation/relations/rat_3.ma". include "ground_2/relocation/trace.ma". (* RELOCATION TRACE *********************************************************) inductive at: trace → relation nat ≝ | at_empty: at (◊) 0 0 | at_zero : ∀cs. at (Ⓣ @ cs) 0 0 | at_succ : ∀cs,i1,i2. at cs i1 i2 → at (Ⓣ @ cs) (⫯i1) (⫯i2) | at_false: ∀cs,i1,i2. at cs i1 i2 → at (Ⓕ @ cs) i1 (⫯i2). interpretation "relocation (trace)" 'RAt i1 cs i2 = (at cs i1 i2). (* Basic inversion lemmas ***************************************************) fact at_inv_empty_aux: ∀cs,i1,i2. @⦃i1, cs⦄ ≡ i2 → cs = ◊ → i1 = 0 ∧ i2 = 0. #cs #i1 #i2 * -cs -i1 -i2 /2 width=1 by conj/ #cs #i1 #i2 #_ #H destruct qed-. lemma at_inv_empty: ∀i1,i2. @⦃i1, ◊⦄ ≡ i2 → i1 = 0 ∧ i2 = 0. /2 width=5 by at_inv_empty_aux/ qed-. lemma at_inv_empty_zero_sn: ∀i. @⦃0, ◊⦄ ≡ i → i = 0. #i #H elim (at_inv_empty … H) -H // qed-. lemma at_inv_empty_zero_dx: ∀i. @⦃i, ◊⦄ ≡ 0 → i = 0. #i #H elim (at_inv_empty … H) -H // qed-. lemma at_inv_empty_succ_sn: ∀i1,i2. @⦃⫯i1, ◊⦄ ≡ i2 → ⊥. #i1 #i2 #H elim (at_inv_empty … H) -H #H1 #H2 destruct qed-. lemma at_inv_empty_succ_dx: ∀i1,i2. @⦃i1, ◊⦄ ≡ ⫯i2 → ⊥. #i1 #i2 #H elim (at_inv_empty … H) -H #H1 #H2 destruct qed-. fact at_inv_true_aux: ∀cs,i1,i2. @⦃i1, cs⦄ ≡ i2 → ∀tl. cs = Ⓣ @ tl → (i1 = 0 ∧ i2 = 0) ∨ ∃∃j1,j2. i1 = ⫯j1 & i2 = ⫯j2 & @⦃j1, tl⦄ ≡ j2. #cs #i1 #i2 * -cs -i1 -i2 [2,3,4: #cs [2,3: #i1 #i2 #Hij ] ] #tl #H destruct /3 width=5 by ex3_2_intro, or_introl, or_intror, conj/ qed-. lemma at_inv_true: ∀cs,i1,i2. @⦃i1, Ⓣ @ cs⦄ ≡ i2 → (i1 = 0 ∧ i2 = 0) ∨ ∃∃j1,j2. i1 = ⫯j1 & i2 = ⫯j2 & @⦃j1, cs⦄ ≡ j2. /2 width=3 by at_inv_true_aux/ qed-. lemma at_inv_true_zero_sn: ∀cs,i. @⦃0, Ⓣ @ cs⦄ ≡ i → i = 0. #cs #i #H elim (at_inv_true … H) -H * // #j1 #j2 #H destruct qed-. lemma at_inv_true_zero_dx: ∀cs,i. @⦃i, Ⓣ @ cs⦄ ≡ 0 → i = 0. #cs #i #H elim (at_inv_true … H) -H * // #j1 #j2 #_ #H destruct qed-. lemma at_inv_true_succ_sn: ∀cs,i1,i2. @⦃⫯i1, Ⓣ @ cs⦄ ≡ i2 → ∃∃j2. i2 = ⫯j2 & @⦃i1, cs⦄ ≡ j2. #cs #i1 #i2 #H elim (at_inv_true … H) -H * [ #H destruct | #j1 #j2 #H1 #H2 destruct /2 width=3 by ex2_intro/ ] qed-. lemma at_inv_true_succ_dx: ∀cs,i1,i2. @⦃i1, Ⓣ @ cs⦄ ≡ ⫯i2 → ∃∃j1. i1 = ⫯j1 & @⦃j1, cs⦄ ≡ i2. #cs #i1 #i2 #H elim (at_inv_true … H) -H * [ #_ #H destruct | #j1 #j2 #H1 #H2 destruct /2 width=3 by ex2_intro/ ] qed-. lemma at_inv_true_succ: ∀cs,i1,i2. @⦃⫯i1, Ⓣ @ cs⦄ ≡ ⫯i2 → @⦃i1, cs⦄ ≡ i2. #cs #i1 #i2 #H elim (at_inv_true … H) -H * [ #H destruct | #j1 #j2 #H1 #H2 destruct // ] qed-. lemma at_inv_true_O_S: ∀cs,i. @⦃0, Ⓣ @ cs⦄ ≡ ⫯i → ⊥. #cs #i #H elim (at_inv_true … H) -H * [ #_ #H destruct | #j1 #j2 #H destruct ] qed-. lemma at_inv_true_S_O: ∀cs,i. @⦃⫯i, Ⓣ @ cs⦄ ≡ 0 → ⊥. #cs #i #H elim (at_inv_true … H) -H * [ #H destruct | #j1 #j2 #_ #H destruct ] qed-. fact at_inv_false_aux: ∀cs,i1,i2. @⦃i1, cs⦄ ≡ i2 → ∀tl. cs = Ⓕ @ tl → ∃∃j2. i2 = ⫯j2 & @⦃i1, tl⦄ ≡ j2. #cs #i1 #i2 * -cs -i1 -i2 [2,3,4: #cs [2,3: #i1 #i2 #Hij ] ] #tl #H destruct /2 width=3 by ex2_intro/ qed-. lemma at_inv_false: ∀cs,i1,i2. @⦃i1, Ⓕ @ cs⦄ ≡ i2 → ∃∃j2. i2 = ⫯j2 & @⦃i1, cs⦄ ≡ j2. /2 width=3 by at_inv_false_aux/ qed-. lemma at_inv_false_S: ∀cs,i1,i2. @⦃i1, Ⓕ @ cs⦄ ≡ ⫯i2 → @⦃i1, cs⦄ ≡ i2. #cs #i1 #i2 #H elim (at_inv_false … H) -H #j2 #H destruct // qed-. lemma at_inv_false_O: ∀cs,i. @⦃i, Ⓕ @ cs⦄ ≡ 0 → ⊥. #cs #i #H elim (at_inv_false … H) -H #j2 #H destruct qed-. lemma at_inv_le: ∀cs,i1,i2. @⦃i1, cs⦄ ≡ i2 → i1 ≤ ∥cs∥ ∧ i2 ≤ |cs|. #cs #i1 #i2 #H elim H -cs -i1 -i2 /2 width=1 by conj/ #cs #i1 #i2 #_ * /3 width=1 by le_S_S, conj/ qed-. lemma at_inv_gt1: ∀cs,i1,i2. @⦃i1, cs⦄ ≡ i2 → ∥cs∥ < i1 → ⊥. #cs #i1 #i2 #H elim (at_inv_le … H) -H /2 width=4 by lt_le_false/ qed-. lemma at_inv_gt2: ∀cs,i1,i2. @⦃i1, cs⦄ ≡ i2 → |cs| < i2 → ⊥. #cs #i1 #i2 #H elim (at_inv_le … H) -H /2 width=4 by lt_le_false/ qed-. (* Basic properties *********************************************************) (* Note: lemma 250 *) lemma at_le: ∀cs,i1. i1 ≤ ∥cs∥ → ∃∃i2. @⦃i1, cs⦄ ≡ i2 & i2 ≤ |cs|. #cs elim cs -cs [ #i1 #H <(le_n_O_to_eq … H) -i1 /2 width=3 by at_empty, ex2_intro/ | * #cs #IH [ * /2 width=3 by at_zero, ex2_intro/ #i1 #H lapply (le_S_S_to_le … H) -H #H elim (IH … H) -IH -H /3 width=3 by at_succ, le_S_S, ex2_intro/ | #i1 #H elim (IH … H) -IH -H /3 width=3 by at_false, le_S_S, ex2_intro/ ] ] qed-. lemma at_top: ∀cs. @⦃∥cs∥, cs⦄ ≡ |cs|. #cs elim cs -cs // * /2 width=1 by at_succ, at_false/ qed. lemma at_monotonic: ∀cs,i1,i2. @⦃i1, cs⦄ ≡ i2 → ∀j1. j1 < i1 → ∃∃j2. @⦃j1, cs⦄ ≡ j2 & j2 < i2. #cs #i1 #i2 #H elim H -cs -i1 -i2 [ #j1 #H elim (lt_zero_false … H) | #cs #j1 #H elim (lt_zero_false … H) | #cs #i1 #i2 #Hij #IH * /2 width=3 by ex2_intro, at_zero/ #j1 #H lapply (lt_S_S_to_lt … H) -H #H elim (IH … H) -i1 #j2 #Hj12 #H /3 width=3 by le_S_S, ex2_intro, at_succ/ | #cs #i1 #i2 #_ #IH #j1 #H elim (IH … H) -i1 /3 width=3 by le_S_S, ex2_intro, at_false/ ] qed-. lemma at_dec: ∀cs,i1,i2. Decidable (@⦃i1, cs⦄ ≡ i2). #cs elim cs -cs [ | * #cs #IH ] [ * [2: #i1 ] * [2,4: #i2 ] [4: /2 width=1 by at_empty, or_introl/ |*: @or_intror #H elim (at_inv_empty … H) #H1 #H2 destruct ] | * [2: #i1 ] * [2,4: #i2 ] [ elim (IH i1 i2) -IH /4 width=1 by at_inv_true_succ, at_succ, or_introl, or_intror/ | -IH /3 width=3 by at_inv_true_O_S, or_intror/ | -IH /3 width=3 by at_inv_true_S_O, or_intror/ | -IH /2 width=1 by or_introl, at_zero/ ] | #i1 * [2: #i2 ] [ elim (IH i1 i2) -IH /4 width=1 by at_inv_false_S, at_false, or_introl, or_intror/ | -IH /3 width=3 by at_inv_false_O, or_intror/ ] ] qed-. lemma is_at_dec: ∀cs,i2. Decidable (∃i1. @⦃i1, cs⦄ ≡ i2). #cs elim cs -cs [ * /3 width=2 by ex_intro, or_introl/ #i2 @or_intror * /2 width=3 by at_inv_empty_succ_dx/ | * #cs #IH * [2,4: #i2 ] [ elim (IH i2) -IH [ * /4 width=2 by at_succ, ex_intro, or_introl/ | #H @or_intror * #x #Hx elim (at_inv_true_succ_dx … Hx) -Hx /3 width=2 by ex_intro/ ] | elim (IH i2) -IH [ * /4 width=2 by at_false, ex_intro, or_introl/ | #H @or_intror * /4 width=2 by at_inv_false_S, ex_intro/ ] | /3 width=2 by at_zero, ex_intro, or_introl/ | @or_intror * /2 width=3 by at_inv_false_O/ ] ] qed-. (* Basic forward lemmas *****************************************************) lemma at_increasing: ∀cs,i1,i2. @⦃i1, cs⦄ ≡ i2 → i1 ≤ i2. #cs #i1 elim i1 -i1 // #j1 #IHi #i2 #H elim (at_monotonic … H j1) -H /3 width=3 by le_to_lt_to_lt/ qed-. lemma at_increasing_strict: ∀cs,i1,i2. @⦃i1, Ⓕ @ cs⦄ ≡ i2 → i1 < i2 ∧ @⦃i1, cs⦄ ≡ ⫰i2. #cs #i1 #i2 #H elim (at_inv_false … H) -H #j2 #H #Hj2 destruct /4 width=2 by conj, at_increasing, le_S_S/ qed-. (* Main properties **********************************************************) theorem at_mono: ∀cs,i,i1. @⦃i, cs⦄ ≡ i1 → ∀i2. @⦃i, cs⦄ ≡ i2 → i1 = i2. #cs #i #i1 #H elim H -cs -i -i1 [2,3,4: #cs [2,3: #i #i1 #_ #IH ] ] #i2 #H [ elim (at_inv_true_succ_sn … H) -H #j2 #H destruct #H >(IH … H) -cs -i -i1 // | elim (at_inv_false … H) -H #j2 #H destruct #H >(IH … H) -cs -i -i1 // | /2 width=2 by at_inv_true_zero_sn/ | /2 width=1 by at_inv_empty_zero_sn/ ] qed-. theorem at_inj: ∀cs,i1,i. @⦃i1, cs⦄ ≡ i → ∀i2. @⦃i2, cs⦄ ≡ i → i1 = i2. #cs #i1 #i #H elim H -cs -i1 -i [2,3,4: #cs [ |2,3: #i1 #i #_ #IH ] ] #i2 #H [ /2 width=2 by at_inv_true_zero_dx/ | elim (at_inv_true_succ_dx … H) -H #j2 #H destruct #H >(IH … H) -cs -i1 -i // | elim (at_inv_false … H) -H #j #H destruct #H >(IH … H) -cs -i1 -j // | /2 width=1 by at_inv_empty_zero_dx/ ] qed-.