(**************************************************************************) (* ___ *) (* ||M|| *) (* ||A|| A project by Andrea Asperti *) (* ||T|| *) (* ||I|| Developers: *) (* ||T|| The HELM team. *) (* ||A|| http://helm.cs.unibo.it *) (* \ / *) (* \ / This file is distributed under the terms of the *) (* v GNU General Public License Version 2 *) (* *) (**************************************************************************) include "ground_2/notation/relations/isidentity_1.ma". include "ground_2/relocation/trace_after.ma". include "ground_2/relocation/trace_sle.ma". (* RELOCATION TRACE *********************************************************) definition isid: predicate trace ≝ λcs. ∥cs∥ = |cs|. interpretation "test for identity (trace)" 'IsIdentity cs = (isid cs). definition t_reflexive: ∀S:Type[0]. predicate (trace → relation S) ≝ λS,R. ∀a. ∃∃t. 𝐈⦃t⦄ & R t a a. (* Basic properties *********************************************************) lemma isid_empty: 𝐈⦃◊⦄. // qed. lemma isid_true: ∀cs. 𝐈⦃cs⦄ → 𝐈⦃Ⓣ @ cs⦄. // qed. (* Basic inversion lemmas ***************************************************) lemma isid_inv_true: ∀cs. 𝐈⦃Ⓣ @ cs⦄ → 𝐈⦃cs⦄. /2 width=1 by injective_S/ qed-. lemma isid_inv_false: ∀cs. 𝐈⦃Ⓕ @ cs⦄ → ⊥. /3 width=4 by colength_le, lt_le_false/ qed-. lemma isid_inv_cons: ∀cs,b. 𝐈⦃b @ cs⦄ → 𝐈⦃cs⦄ ∧ b = Ⓣ. #cs * #H /3 width=1 by isid_inv_true, conj/ elim (isid_inv_false … H) qed-. (* Properties on application ************************************************) lemma isid_at: ∀cs. (∀i1,i2. @⦃i1, cs⦄ ≡ i2 → i1 = i2) → 𝐈⦃cs⦄. #cs elim cs -cs // * /2 width=1 by/ qed. (* Inversion lemmas on application ******************************************) lemma isid_inv_at: ∀cs,i1,i2. @⦃i1, cs⦄ ≡ i2 → 𝐈⦃cs⦄ → i1 = i2. #cs #i1 #i2 #H elim H -cs -i1 -i2 /4 width=1 by isid_inv_true, eq_f/ #cs #i1 #i2 #_ #IH #H elim (isid_inv_false … H) qed-. (* Properties on composition ************************************************) lemma isid_after_sn: ∀cs2. ∃∃cs1. 𝐈⦃cs1⦄ & cs1 ⊚ cs2 ≡ cs2. #cs2 elim cs2 -cs2 /2 width=3 by after_empty, ex2_intro/ #b #cs2 * /3 width=3 by isid_true, after_true, ex2_intro/ qed-. lemma isid_after_dx: ∀cs1. ∃∃cs2. 𝐈⦃cs2⦄ & cs1 ⊚ cs2 ≡ cs1. #cs1 elim cs1 -cs1 /2 width=3 by after_empty, ex2_intro/ * #cs1 * /3 width=3 by isid_true, after_true, after_false, ex2_intro/ qed-. lemma after_isid_sn: ∀cs1,cs2. cs1 ⊚ cs2 ≡ cs2 → 𝐈⦃cs1⦄ . #cs1 #cs2 #H elim (after_inv_length … H) -H // qed. lemma after_isid_dx: ∀cs1,cs2. cs1 ⊚ cs2 ≡ cs1 → 𝐈⦃cs2⦄ . #cs1 #cs2 #H elim (after_inv_length … H) -H // qed. (* Inversion lemmas on composition ******************************************) lemma after_isid_inv_sn: ∀cs1,cs2,cs. cs1 ⊚ cs2 ≡ cs → 𝐈⦃cs1⦄ → cs = cs2. #cs1 #cs2 #cs #H elim H -cs1 -cs2 -cs // #cs1 #cs2 #cs #_ [ #b ] #IH #H [ >IH -IH // | elim (isid_inv_false … H) ] qed-. lemma after_isid_inv_dx: ∀cs1,cs2,cs. cs1 ⊚ cs2 ≡ cs → 𝐈⦃cs2⦄ → cs = cs1. #cs1 #cs2 #cs #H elim H -cs1 -cs2 -cs // #cs1 #cs2 #cs #_ [ #b ] #IH #H [ elim (isid_inv_cons … H) -H #H >IH -IH // | >IH -IH // ] qed-. lemma after_inv_isid3: ∀t1,t2,t. t1 ⊚ t2 ≡ t → 𝐈⦃t⦄ → 𝐈⦃t1⦄ ∧ 𝐈⦃t2⦄. #t1 #t2 #t #H elim H -t1 -t2 -t [ /2 width=1 by conj/ | #t1 #t2 #t #_ #b #IHt #H elim (isid_inv_cons … H) -H #Ht #H elim (IHt Ht) -t /2 width=1 by isid_true, conj/ | #t1 #t2 #t #_ #_ #H elim (isid_inv_false … H) ] qed-. (* Forward on inclusion *****************************************************) lemma sle_isid1_fwd: ∀t1,t2. t1 ⊆ t2 → 𝐈⦃t1⦄ → t1 = t2. #t1 #t2 #H elim H -t1 -t2 // [ #t1 #t2 #_ #IH #H lapply (isid_inv_true … H) -H #HT1 @eq_f2 // @IH @HT1 (**) (* full auto fails *) | #t1 #t2 #b #_ #_ #H elim (isid_inv_false … H) ] qed-.