(**************************************************************************) (* ___ *) (* ||M|| *) (* ||A|| A project by Andrea Asperti *) (* ||T|| *) (* ||I|| Developers: *) (* ||T|| The HELM team. *) (* ||A|| http://helm.cs.unibo.it *) (* \ / *) (* \ / This file is distributed under the terms of the *) (* v GNU General Public License Version 2 *) (* *) (**************************************************************************) include "static_2/notation/relations/ideqsn_3.ma". include "static_2/static/rex.ma". (* SYNTACTIC EQUIVALENCE FOR LOCAL ENVIRONMENTS ON REFERRED ENTRIES *********) (* Basic_2A1: was: lleq *) definition req: relation3 term lenv lenv ≝ rex ceq. interpretation "syntactic equivalence on referred entries (local environment)" 'IdEqSn T L1 L2 = (req T L1 L2). (* Note: "R_transitive_req R" is equivalent to "R_transitive_rex ceq R R" *) (* Basic_2A1: uses: lleq_transitive *) definition R_transitive_req: predicate (relation3 lenv term term) ≝ λR. ∀L2,T1,T2. R L2 T1 T2 → ∀L1. L1 ≡[T1] L2 → R L1 T1 T2. (* Basic inversion lemmas ***************************************************) lemma req_inv_bind: ∀p,I,L1,L2,V,T. L1 ≡[ⓑ[p,I]V.T] L2 → ∧∧ L1 ≡[V] L2 & L1.ⓑ[I]V ≡[T] L2.ⓑ[I]V. /2 width=2 by rex_inv_bind/ qed-. lemma req_inv_flat: ∀I,L1,L2,V,T. L1 ≡[ⓕ[I]V.T] L2 → ∧∧ L1 ≡[V] L2 & L1 ≡[T] L2. /2 width=2 by rex_inv_flat/ qed-. (* Advanced inversion lemmas ************************************************) lemma req_inv_zero_pair_sn: ∀I,L2,K1,V. K1.ⓑ[I]V ≡[#0] L2 → ∃∃K2. K1 ≡[V] K2 & L2 = K2.ⓑ[I]V. #I #L2 #K1 #V #H elim (rex_inv_zero_pair_sn … H) -H #K2 #X #HK12 #HX #H destruct /2 width=3 by ex2_intro/ qed-. lemma req_inv_zero_pair_dx: ∀I,L1,K2,V. L1 ≡[#0] K2.ⓑ[I]V → ∃∃K1. K1 ≡[V] K2 & L1 = K1.ⓑ[I]V. #I #L1 #K2 #V #H elim (rex_inv_zero_pair_dx … H) -H #K1 #X #HK12 #HX #H destruct /2 width=3 by ex2_intro/ qed-. lemma req_inv_lref_bind_sn: ∀I1,K1,L2,i. K1.ⓘ[I1] ≡[#↑i] L2 → ∃∃I2,K2. K1 ≡[#i] K2 & L2 = K2.ⓘ[I2]. /2 width=2 by rex_inv_lref_bind_sn/ qed-. lemma req_inv_lref_bind_dx: ∀I2,K2,L1,i. L1 ≡[#↑i] K2.ⓘ[I2] → ∃∃I1,K1. K1 ≡[#i] K2 & L1 = K1.ⓘ[I1]. /2 width=2 by rex_inv_lref_bind_dx/ qed-. (* Basic forward lemmas *****************************************************) (* Basic_2A1: was: llpx_sn_lrefl *) (* Basic_2A1: this should have been lleq_fwd_llpx_sn *) lemma req_fwd_rex (R): c_reflexive … R → ∀L1,L2,T. L1 ≡[T] L2 → L1 ⪤[R,T] L2. #R #HR #L1 #L2 #T * #f #Hf #HL12 /4 width=7 by sex_co, cext2_co, ex2_intro/ qed-. (* Basic_properties *********************************************************) lemma frees_req_conf: ∀f,L1,T. L1 ⊢ 𝐅+❪T❫ ≘ f → ∀L2. L1 ≡[T] L2 → L2 ⊢ 𝐅+❪T❫ ≘ f. #f #L1 #T #H elim H -f -L1 -T [ /2 width=3 by frees_sort/ | #f #i #Hf #L2 #H2 >(rex_inv_atom_sn … H2) -L2 /2 width=1 by frees_atom/ | #f #I #L1 #V1 #_ #IH #Y #H2 elim (req_inv_zero_pair_sn … H2) -H2 #L2 #HL12 #H destruct /3 width=1 by frees_pair/ | #f #I #L1 #Hf #Y #H2 elim (rex_inv_zero_unit_sn … H2) -H2 #g #L2 #_ #_ #H destruct /2 width=1 by frees_unit/ | #f #I #L1 #i #_ #IH #Y #H2 elim (req_inv_lref_bind_sn … H2) -H2 #J #L2 #HL12 #H destruct /3 width=1 by frees_lref/ | /2 width=1 by frees_gref/ | #f1V #f1T #f1 #p #I #L1 #V1 #T1 #_ #_ #Hf1 #IHV #IHT #L2 #H2 elim (req_inv_bind … H2) -H2 /3 width=5 by frees_bind/ | #f1V #f1T #f1 #I #L1 #V1 #T1 #_ #_ #Hf1 #IHV #IHT #L2 #H2 elim (req_inv_flat … H2) -H2 /3 width=5 by frees_flat/ ] qed-. (* Basic_2A1: removed theorems 10: lleq_ind lleq_fwd_lref lleq_fwd_drop_sn lleq_fwd_drop_dx lleq_skip lleq_lref lleq_free lleq_Y lleq_ge_up lleq_ge *)