]> matita.cs.unibo.it Git - helm.git/blobdiff - helm/ocaml/cic_transformations/cic2content.ml
Cic2content split into Content and Cic2content.
[helm.git] / helm / ocaml / cic_transformations / cic2content.ml
index d4b729606b778c55ada75b7a9fada6d38f641b42..3fd8422cc30540e4c2a0f905ffcc2fe9b611b03f 100644 (file)
 (*                             16/62003                                   *)
 (*                                                                        *)
 (**************************************************************************)
-type id = string;;
-type recursion_kind = NoRecursive | Recursive | CoRecursive;;
-
-type 'term cobj =
-   Def of id * id option * string *       (* name,         *)
-    'term option * 'term *                       (*  body, type,  *)
-    UriManager.uri list                          (*  parameters   *)
- | Theorem of id * id option * string *          (* name,         *)
-    ('term proof) option * 'term *               (*  body, type,  *)
-    UriManager.uri list                          (*  parameters   *)
- | Variable of id *
-    string * 'term option * 'term *              (* name, body, type *)
-    UriManager.uri list  
-(*                        (*  parameters      *)
- | CurrentProof of id * id *
-    string * annmetasenv *                       (*  name, conjectures,     *)
-    'term proof * 'term * UriManager.uri list    (*  value,type,parameters  *)
-*)
- | InductiveDefinition of id *
-    'term cinductiveType list *                  (* inductive types ,       *)
-    UriManager.uri list * int                    (*  parameters,n ind. pars *)
-
-and 'term cinductiveType = 
- id * string * bool * 'term *                (* typename, inductive, arity *)
-   'term cconstructor list                   (*  constructors        *)
-
-and 'term cconstructor =
- string * 'term                             (* id, type *)
-
-and
-      'term proof = 
-      { proof_name : string option;
-        proof_id   : string ;
-        proof_kind : recursion_kind ;
-        proof_context : ('term context_element) list ;
-        proof_apply_context: ('term proof) list;
-        proof_conclude : 'term conclude_item;
-      }
-and
-      'term context_element = 
-         Declaration of 'term declaration
-       | Hypothesis of 'term declaration
-       | Proof of 'term proof
-       | Definition of 'term definition
-       | Joint of 'term joint
-and
-      'term declaration =
-       { dec_name : string option;
-         dec_id : string ;
-         dec_inductive : bool;
-         dec_aref : string;
-         dec_type : 'term 
-       }
-and
-      'term definition =
-       { def_name : string option;
-         def_id : string ;
-         def_aref : string ;
-         def_term : 'term 
-       }
-and
-      'term joint =
-       { joint_id : string ;
-         joint_kind : recursion_kind ;
-         joint_defs : 'term context_element list
-       }
-and 
-      'term conclude_item =
-       { conclude_id :string; 
-         conclude_aref : string;
-         conclude_method : string;
-         conclude_args : ('term arg) list ;
-         conclude_conclusion : 'term option 
-       }
-and 
-      'term arg =
-         Aux of int
-       | Premise of premise
-       | Term of 'term
-       | ArgProof of 'term proof
-       | ArgMethod of string (* ???? *)
-and 
-      premise =
-       { premise_id: string;
-         premise_xref : string ;
-         premise_binder : string option;
-         premise_n : int option;
-       }
-;;
-
 
 (* e se mettessi la conversione di BY nell'apply_context ? *)
 (* sarebbe carino avere l'invariante che la proof2pres
@@ -139,7 +49,6 @@ let name_of = function
 exception Not_a_proof;;
 exception NotImplemented;;
 exception NotApplicable;;
-exception ToDo;;
    
 (* we do not care for positivity, here, that in any case is enforced by
    well typing. Just a brutal search *)
@@ -252,6 +161,7 @@ let test_for_lifting ~ids_to_inner_types =
 
 let build_args seed l subproofs ~ids_to_inner_types ~ids_to_inner_sorts =
   let module C = Cic in
+  let module K = Content in
   let rec aux l subrpoofs =
     match l with
       [] -> []
@@ -261,11 +171,11 @@ let build_args seed l subproofs ~ids_to_inner_types ~ids_to_inner_sorts =
              [] -> assert false
            | p::tl -> 
               let new_arg = 
-               Premise
-                 premise_id = gen_id seed;
-                    premise_xref = p.proof_id;
-                    premise_binder = p.proof_name;
-                    premise_n = None
+                K.Premise
+                  { K.premise_id = gen_id seed;
+                    K.premise_xref = p.K.proof_id;
+                    K.premise_binder = p.K.proof_name;
+                    K.premise_n = None
                   }
                 in new_arg::(aux l1 tl))
         else 
@@ -276,14 +186,14 @@ let build_args seed l subproofs ~ids_to_inner_types ~ids_to_inner_sorts =
                    (try Hashtbl.find ids_to_inner_sorts idr 
                     with notfound -> "Type") in 
                  if sort ="Prop" then 
-                    Premise 
-                      { premise_id = gen_id seed;
-                        premise_xref = idr;
-                        premise_binder = Some b;
-                        premise_n = Some n
+                    K.Premise 
+                      { K.premise_id = gen_id seed;
+                        K.premise_xref = idr;
+                        K.premise_binder = Some b;
+                        K.premise_n = Some n
                       }
-                 else (Term t)
-             | _ -> (Term t)) in 
+                 else (K.Term t)
+             | _ -> (K.Term t)) in 
           hd::(aux l1 subproofs)
   in aux l subproofs
 ;;
@@ -293,18 +203,17 @@ conclude element to the apply_context list, in case context is
 empty. Otherwise, it just returns [p] *)
 
 let flat seed p = 
-  if (p.proof_context = []) then
-    if p.proof_apply_context = [] then [p]
+ let module K = Content in
+  if (p.K.proof_context = []) then
+    if p.K.proof_apply_context = [] then [p]
     else 
       let p1 =
-        { proof_name = p.proof_name;
-          proof_id   = gen_id seed;
-          proof_kind = NoRecursive;
-          proof_context = []; 
-          proof_apply_context = [];
-          proof_conclude = p.proof_conclude;
+        { p with
+          K.proof_id = gen_id seed;
+          K.proof_context = []; 
+          K.proof_apply_context = []
         } in
-      p.proof_apply_context@[p1]
+      p.K.proof_apply_context@[p1]
   else 
     [p]
 ;;
@@ -317,62 +226,61 @@ let rec serialize seed =
 (* top_down = true if the term is a LAMBDA or a decl *)
 let generate_conversion seed top_down id inner_proof ~ids_to_inner_types =
  let module C2A = Cic2acic in
+ let module K = Content in
  let exp = (try ((Hashtbl.find ids_to_inner_types id).C2A.annexpected)
             with Not_found -> None)
  in
  match exp with
      None -> inner_proof
    | Some expty ->
-       if inner_proof.proof_conclude.conclude_method = "Intros+LetTac" then
-         { proof_name = None ;
-            proof_id   = gen_id seed;
-            proof_kind = NoRecursive;
-            proof_context = [] ;
-            proof_apply_context = [];
-            proof_conclude = 
-              { conclude_id = gen_id seed; 
-                conclude_aref = id;
-                conclude_method = "TD_Conversion";
-                conclude_args = [ArgProof inner_proof];
-                conclude_conclusion = Some expty
+       if inner_proof.K.proof_conclude.K.conclude_method = "Intros+LetTac" then
+         { K.proof_name = None ;
+            K.proof_id   = gen_id seed;
+            K.proof_context = [] ;
+            K.proof_apply_context = [];
+            K.proof_conclude = 
+              { K.conclude_id = gen_id seed; 
+                K.conclude_aref = id;
+                K.conclude_method = "TD_Conversion";
+                K.conclude_args = [K.ArgProof inner_proof];
+                K.conclude_conclusion = Some expty
               };
           }
         else
-          { proof_name = None ;
-            proof_id   = gen_id seed;
-            proof_kind = NoRecursive;
-            proof_context = [] ;
-            proof_apply_context = [inner_proof];
-            proof_conclude = 
-              { conclude_id = gen_id seed; 
-                conclude_aref = id;
-                conclude_method = "BU_Conversion";
-                conclude_args =  
-                 [Premise 
-                  { premise_id = gen_id seed;
-                    premise_xref = inner_proof.proof_id; 
-                    premise_binder = None;
-                    premise_n = None
+          { K.proof_name = None ;
+            K.proof_id   = gen_id seed;
+            K.proof_context = [] ;
+            K.proof_apply_context = [inner_proof];
+            K.proof_conclude = 
+              { K.conclude_id = gen_id seed; 
+                K.conclude_aref = id;
+                K.conclude_method = "BU_Conversion";
+                K.conclude_args =  
+                 [K.Premise 
+                  { K.premise_id = gen_id seed;
+                    K.premise_xref = inner_proof.K.proof_id; 
+                    K.premise_binder = None;
+                    K.premise_n = None
                   } 
                  ]; 
-                conclude_conclusion = Some expty
+                K.conclude_conclusion = Some expty
               };
           }
 ;;
 
 let generate_exact seed t id name ~ids_to_inner_types =
   let module C2A = Cic2acic in
-    { proof_name = name;
-      proof_id   = id ;
-      proof_kind = NoRecursive;
-      proof_context = [] ;
-      proof_apply_context = [];
-      proof_conclude = 
-        { conclude_id = gen_id seed; 
-          conclude_aref = id;
-          conclude_method = "Exact";
-          conclude_args = [Term t];
-          conclude_conclusion = 
+  let module K = Content in
+    { K.proof_name = name;
+      K.proof_id   = id ;
+      K.proof_context = [] ;
+      K.proof_apply_context = [];
+      K.proof_conclude = 
+        { K.conclude_id = gen_id seed; 
+          K.conclude_aref = id;
+          K.conclude_method = "Exact";
+          K.conclude_args = [K.Term t];
+          K.conclude_conclusion = 
               try Some (Hashtbl.find ids_to_inner_types id).C2A.annsynthesized
               with notfound -> None
         };
@@ -382,21 +290,21 @@ let generate_exact seed t id name ~ids_to_inner_types =
 let generate_intros_let_tac seed id n s is_intro inner_proof name ~ids_to_inner_types =
   let module C2A = Cic2acic in
   let module C = Cic in
-    { proof_name = name;
-      proof_id   = id ;
-      proof_kind = NoRecursive;
-      proof_context = [] ;
-      proof_apply_context = [];
-      proof_conclude = 
-        { conclude_id = gen_id seed; 
-          conclude_aref = id;
-          conclude_method = "Intros+LetTac";
-          conclude_args = [ArgProof inner_proof];
-          conclude_conclusion = 
+  let module K = Content in
+    { K.proof_name = name;
+      K.proof_id   = id ;
+      K.proof_context = [] ;
+      K.proof_apply_context = [];
+      K.proof_conclude = 
+        { K.conclude_id = gen_id seed; 
+          K.conclude_aref = id;
+          K.conclude_method = "Intros+LetTac";
+          K.conclude_args = [K.ArgProof inner_proof];
+          K.conclude_conclusion = 
             try Some 
              (Hashtbl.find ids_to_inner_types id).C2A.annsynthesized
             with notfound -> 
-              (match inner_proof.proof_conclude.conclude_conclusion with
+              (match inner_proof.K.proof_conclude.K.conclude_conclusion with
                  None -> None
               | Some t -> 
                   if is_intro then Some (C.AProd ("gen"^id,n,s,t))
@@ -406,35 +314,37 @@ let generate_intros_let_tac seed id n s is_intro inner_proof name ~ids_to_inner_
 ;;
 
 let build_decl_item seed id n s ~ids_to_inner_sorts =
+ let module K = Content in
   let sort = Hashtbl.find ids_to_inner_sorts (Cic2acic.source_id_of_id id) in
   if sort = "Prop" then
-     Hypothesis
-       { dec_name = name_of n;
-         dec_id = gen_id seed; 
-         dec_inductive = false;
-         dec_aref = id;
-         dec_type = s
+     `Hypothesis
+       { K.dec_name = name_of n;
+         K.dec_id = gen_id seed; 
+         K.dec_inductive = false;
+         K.dec_aref = id;
+         K.dec_type = s
        }
   else 
-     Declaration
-       { dec_name = name_of n;
-         dec_id = gen_id seed; 
-         dec_inductive = false;
-         dec_aref = id;
-         dec_type = s
+     `Declaration
+       { K.dec_name = name_of n;
+         K.dec_id = gen_id seed; 
+         K.dec_inductive = false;
+         K.dec_aref = id;
+         K.dec_type = s
        }
 ;;
 
 let rec build_def_item seed id n t ~ids_to_inner_sorts ~ids_to_inner_types =
+ let module K = Content in
   let sort = Hashtbl.find ids_to_inner_sorts id in
   if sort = "Prop" then
-     Proof (acic2content seed ~name:(name_of n) ~ids_to_inner_sorts  ~ids_to_inner_types t)
+     `Proof (acic2content seed ~name:(name_of n) ~ids_to_inner_sorts  ~ids_to_inner_types t)
   else 
-     Definition
-       { def_name = name_of n;
-         def_id = gen_id seed; 
-         def_aref = id;
-         def_term = t
+     `Definition
+       { K.def_name = name_of n;
+         K.def_id = gen_id seed; 
+         K.def_aref = id;
+         K.def_term = t
        }
 
 (* the following function must be called with an object of sort
@@ -445,6 +355,7 @@ and acic2content seed ?(name = None) ~ids_to_inner_sorts ~ids_to_inner_types t =
   let rec aux ?(name = None) t =
   let module C = Cic in
   let module X = Xml in
+  let module K = Content in
   let module U = UriManager in
   let module C2A = Cic2acic in
   let t1 =
@@ -473,20 +384,17 @@ and acic2content seed ?(name = None) ~ids_to_inner_sorts ~ids_to_inner_types t =
         if sort = "Prop" then 
           let proof = aux t ~name:None in
           let proof' = 
-            if proof.proof_conclude.conclude_method = "Intros+LetTac" then
-               match proof.proof_conclude.conclude_args with
-                 [ArgProof p] -> p
+            if proof.K.proof_conclude.K.conclude_method = "Intros+LetTac" then
+               match proof.K.proof_conclude.K.conclude_args with
+                 [K.ArgProof p] -> p
                | _ -> assert false                  
             else proof in
           let proof'' =
-            { proof_name = None;
-              proof_id   = proof'.proof_id;
-              proof_kind = proof'.proof_kind ;
-              proof_context = 
+            { proof' with
+              K.proof_name = None;
+              K.proof_context = 
                 (build_decl_item seed id n s ids_to_inner_sorts)::
-                 proof'.proof_context;
-              proof_apply_context = proof'.proof_apply_context;
-              proof_conclude = proof'.proof_conclude;
+                  proof'.K.proof_context
             }
           in
           generate_intros_let_tac seed id n s true proof'' name ~ids_to_inner_types
@@ -496,20 +404,18 @@ and acic2content seed ?(name = None) ~ids_to_inner_sorts ~ids_to_inner_types t =
         if sort = "Prop" then 
           let proof = aux t in
           let proof' = 
-            if proof.proof_conclude.conclude_method = "Intros+LetTac" then
-               match proof.proof_conclude.conclude_args with
-                 [ArgProof p] -> p
+            if proof.K.proof_conclude.K.conclude_method = "Intros+LetTac" then
+               match proof.K.proof_conclude.K.conclude_args with
+                 [K.ArgProof p] -> p
                | _ -> assert false                  
             else proof in
           let proof'' =
-            { proof_name = name;
-              proof_id   = proof'.proof_id;
-              proof_kind = proof'.proof_kind ;
-              proof_context = 
-                (build_def_item seed id n s ids_to_inner_sorts 
-                  ids_to_inner_types)::proof'.proof_context;
-              proof_apply_context = proof'.proof_apply_context;
-              proof_conclude = proof'.proof_conclude;
+            { proof' with
+               K.proof_name = name;
+               K.proof_context = 
+                 ((build_def_item seed id n s ids_to_inner_sorts 
+                   ids_to_inner_types):> Cic.annterm K.in_proof_context_element)
+                 ::proof'.K.proof_context;
             }
           in
           generate_intros_let_tac seed id n s false proof'' name ~ids_to_inner_types
@@ -529,17 +435,16 @@ and acic2content seed ?(name = None) ~ids_to_inner_sorts ~ids_to_inner_types t =
             | _ -> List.map (aux ~name:(Some "H")) args_to_lift in
           let args = build_args seed li subproofs 
                  ~ids_to_inner_types ~ids_to_inner_sorts in
-            { proof_name = name;
-              proof_id   = gen_id seed;
-              proof_kind = NoRecursive;
-              proof_context = [];
-              proof_apply_context = serialize seed subproofs;
-              proof_conclude = 
-                { conclude_id = gen_id seed;
-                  conclude_aref = id;
-                  conclude_method = "Apply";
-                  conclude_args = args;
-                  conclude_conclusion = 
+            { K.proof_name = name;
+              K.proof_id   = gen_id seed;
+              K.proof_context = [];
+              K.proof_apply_context = serialize seed subproofs;
+              K.proof_conclude = 
+                { K.conclude_id = gen_id seed;
+                  K.conclude_aref = id;
+                  K.conclude_method = "Apply";
+                  K.conclude_args = args;
+                  K.conclude_conclusion = 
                      try Some 
                        (Hashtbl.find ids_to_inner_types id).C2A.annsynthesized
                      with notfound -> None
@@ -558,156 +463,150 @@ and acic2content seed ?(name = None) ~ids_to_inner_sorts ~ids_to_inner_types t =
         else raise Not_a_proof
     | C.AMutCase (id,uri,typeno,ty,te,patterns) ->
         let teid = get_id te in
-        let pp = List.map (function p -> (ArgProof (aux p))) patterns in
+        let pp = List.map (function p -> (K.ArgProof (aux p))) patterns in
         (match 
           (try Some (Hashtbl.find ids_to_inner_types teid).C2A.annsynthesized
            with notfound -> None)
          with
              Some tety -> (* we must lift up the argument *)
                let p = (aux te) in
-               { proof_name = Some "name";
-                 proof_id   = gen_id seed;
-                 proof_kind = NoRecursive;
-                 proof_context = []; 
-                 proof_apply_context = flat seed p;
-                 proof_conclude = 
-                   { conclude_id = gen_id seed; 
-                     conclude_aref = id;
-                     conclude_method = "Case";
-                     conclude_args = (Term ty)::(Term te)::pp;
-                     conclude_conclusion = 
+               { K.proof_name = Some "name";
+                 K.proof_id   = gen_id seed;
+                 K.proof_context = []; 
+                 K.proof_apply_context = flat seed p;
+                 K.proof_conclude = 
+                   { K.conclude_id = gen_id seed; 
+                     K.conclude_aref = id;
+                     K.conclude_method = "Case";
+                     K.conclude_args = (K.Term ty)::(K.Term te)::pp;
+                     K.conclude_conclusion = 
                        try Some 
                         (Hashtbl.find ids_to_inner_types id).C2A.annsynthesized
                        with notfound -> None  
-                   };
+                   }
                }
            | None ->
-               { proof_name = name;
-                 proof_id   = gen_id seed;
-                 proof_kind = NoRecursive;
-                 proof_context = []; 
-                 proof_apply_context = [];
-                 proof_conclude = 
-                   { conclude_id = gen_id seed; 
-                     conclude_aref = id;
-                     conclude_method = "Case";
-                     conclude_args = (Term ty)::(Term te)::pp;
-                     conclude_conclusion = 
+               { K.proof_name = name;
+                 K.proof_id   = gen_id seed;
+                 K.proof_context = []; 
+                 K.proof_apply_context = [];
+                 K.proof_conclude = 
+                   { K.conclude_id = gen_id seed; 
+                     K.conclude_aref = id;
+                     K.conclude_method = "Case";
+                     K.conclude_args = (K.Term ty)::(K.Term te)::pp;
+                     K.conclude_conclusion = 
                        try Some 
                         (Hashtbl.find ids_to_inner_types id).C2A.annsynthesized
                        with notfound -> None 
-                   };
+                   }
                }
          )  
     | C.AFix (id, no, [(id1,n,_,ty,bo)]) -> 
         let proof = (aux bo) in (* must be recursive !! *)
-          { proof_name = name;
-            proof_id   = gen_id seed;
-            proof_kind = NoRecursive;
-            proof_context = [Proof proof]; 
-            proof_apply_context = [];
-            proof_conclude = 
-              { conclude_id = gen_id seed; 
-                conclude_aref = id;
-                conclude_method = "Exact";
-                conclude_args =
-                [ Premise
-                  { premise_id = gen_id seed; 
-                    premise_xref = proof.proof_id;
-                    premise_binder = proof.proof_name;
-                    premise_n = Some 1;
+          { K.proof_name = name;
+            K.proof_id   = gen_id seed;
+            K.proof_context = [`Proof proof]; 
+            K.proof_apply_context = [];
+            K.proof_conclude = 
+              { K.conclude_id = gen_id seed; 
+                K.conclude_aref = id;
+                K.conclude_method = "Exact";
+                K.conclude_args =
+                [ K.Premise
+                  { K.premise_id = gen_id seed; 
+                    K.premise_xref = proof.K.proof_id;
+                    K.premise_binder = proof.K.proof_name;
+                    K.premise_n = Some 1;
                   }
                 ];
-                conclude_conclusion =
+                K.conclude_conclusion =
                    try Some 
                      (Hashtbl.find ids_to_inner_types id).C2A.annsynthesized
                    with notfound -> None
-              };
+              }
         }
     | C.AFix (id, no, funs) -> 
         let proofs = 
-          List.map (function (id1,n,_,ty,bo) -> (Proof (aux bo))) funs in
+          List.map (function (id1,n,_,ty,bo) -> (`Proof (aux bo))) funs in
         let jo = 
-          { joint_id = gen_id seed;
-            joint_kind = Recursive;
-            joint_defs = proofs
+          { K.joint_id = gen_id seed;
+            K.joint_kind = `Recursive;
+            K.joint_defs = proofs
           } 
         in
-          { proof_name = name;
-            proof_id   = gen_id seed;
-            proof_kind = NoRecursive;
-            proof_context = [Joint jo]; 
-            proof_apply_context = [];
-            proof_conclude = 
-              { conclude_id = gen_id seed; 
-                conclude_aref = id;
-                conclude_method = "Exact";
-                conclude_args =
-                [ Premise
-                  { premise_id = gen_id seed; 
-                    premise_xref = jo.joint_id;
-                    premise_binder = Some "tiralo fuori";
-                    premise_n = Some no;
+          { K.proof_name = name;
+            K.proof_id   = gen_id seed;
+            K.proof_context = [`Joint jo]; 
+            K.proof_apply_context = [];
+            K.proof_conclude = 
+              { K.conclude_id = gen_id seed; 
+                K.conclude_aref = id;
+                K.conclude_method = "Exact";
+                K.conclude_args =
+                [ K.Premise
+                  { K.premise_id = gen_id seed; 
+                    K.premise_xref = jo.K.joint_id;
+                    K.premise_binder = Some "tiralo fuori";
+                    K.premise_n = Some no;
                   }
                 ];
-                conclude_conclusion =
+                K.conclude_conclusion =
                    try Some 
                      (Hashtbl.find ids_to_inner_types id).C2A.annsynthesized
                    with notfound -> None
-              };
+              }
         } 
     | C.ACoFix (id,no,[(id1,n,ty,bo)]) -> 
         let proof = (aux bo) in (* must be recursive !! *)
-          { proof_name = name;
-            proof_id   = gen_id seed;
-            proof_kind = NoRecursive;
-            proof_context = [Proof proof]; 
-            proof_apply_context = [];
-            proof_conclude = 
-              { conclude_id = gen_id seed; 
-                conclude_aref = id;
-                conclude_method = "Exact";
-                conclude_args =
-                [ Premise
-                  { premise_id = gen_id seed; 
-                    premise_xref = proof.proof_id;
-                    premise_binder = proof.proof_name;
-                    premise_n = Some 1;
+          { K.proof_name = name;
+            K.proof_id   = gen_id seed;
+            K.proof_context = [`Proof proof]; 
+            K.proof_apply_context = [];
+            K.proof_conclude = 
+              { K.conclude_id = gen_id seed; 
+                K.conclude_aref = id;
+                K.conclude_method = "Exact";
+                K.conclude_args =
+                [ K.Premise
+                  { K.premise_id = gen_id seed; 
+                    K.premise_xref = proof.K.proof_id;
+                    K.premise_binder = proof.K.proof_name;
+                    K.premise_n = Some 1;
                   }
                 ];
-                conclude_conclusion =
+                K.conclude_conclusion =
                    try Some 
                      (Hashtbl.find ids_to_inner_types id).C2A.annsynthesized
                    with notfound -> None
-              };
+              }
         } 
     | C.ACoFix (id,no,funs) -> 
         let proofs = 
-          List.map (function (id1,n,ty,bo) -> (Proof (aux bo))) funs in
+          List.map (function (id1,n,ty,bo) -> (`Proof (aux bo))) funs in
         let jo = 
-          { joint_id = gen_id seed;
-            joint_kind = Recursive;
-            joint_defs = proofs
+          { K.joint_id = gen_id seed;
+            K.joint_kind = `Recursive;
+            K.joint_defs = proofs
           } 
         in
-          { proof_name = name;
-            proof_id   = gen_id seed;
-            proof_kind = NoRecursive;
-            proof_context = [Joint jo]; 
-            proof_apply_context = [];
-            proof_conclude = 
-              { conclude_id = gen_id seed; 
-                conclude_aref = id;
-                conclude_method = "Exact";
-                conclude_args =
-                [ Premise
-                  { premise_id = gen_id seed; 
-                    premise_xref = jo.joint_id;
-                    premise_binder = Some "tiralo fuori";
-                    premise_n = Some no;
+          { K.proof_name = name;
+            K.proof_id   = gen_id seed;
+            K.proof_context = [`Joint jo]; 
+            K.proof_apply_context = [];
+            K.proof_conclude = 
+              { K.conclude_id = gen_id seed; 
+                K.conclude_aref = id;
+                K.conclude_method = "Exact";
+                K.conclude_args =
+                [ K.Premise
+                  { K.premise_id = gen_id seed; 
+                    K.premise_xref = jo.K.joint_id;
+                    K.premise_binder = Some "tiralo fuori";
+                    K.premise_n = Some no;
                   }
                 ];
-                conclude_conclusion =
+                K.conclude_conclusion =
                   try Some 
                     (Hashtbl.find ids_to_inner_types id).C2A.annsynthesized
                   with notfound -> None
@@ -721,6 +620,7 @@ in aux ~name:name t
 and inductive seed name id li ids_to_inner_types ids_to_inner_sorts =
   let aux ?(name = None) = acic2content seed ~name:None ~ids_to_inner_types ~ids_to_inner_sorts in
   let module C2A = Cic2acic in
+  let module K = Content in
   let module C = Cic in
   match li with 
     C.AConst (idc,uri,exp_named_subst)::args ->
@@ -803,58 +703,55 @@ and inductive seed name id li ids_to_inner_types ids_to_inner_sorts =
                                    match t1 with
                                    Cic.ALambda(id2,n2,s2,t2) ->
                                      let inductive_hyp =
-                                       Hypothesis
-                                         { dec_name = name_of n2;
-                                           dec_id = gen_id seed; 
-                                           dec_inductive = true;
-                                           dec_aref = id2;
-                                           dec_type = s2
+                                       `Hypothesis
+                                         { K.dec_name = name_of n2;
+                                           K.dec_id = gen_id seed; 
+                                           K.dec_inductive = true;
+                                           K.dec_aref = id2;
+                                           K.dec_type = s2
                                          } in
                                      let (context,body) = bc (t,t2) in
                                      (ce::inductive_hyp::context,body)
-                                | _ -> assert false)
+                                 | _ -> assert false)
                               else 
                                 (  prerr_endline ("no inductive:" ^ (UriManager.string_of_uri ind_uri) ^ (CicPp.ppterm s)); flush stderr; 
                                 let (context,body) = bc (t,t1) in
                                 (ce::context,body))
                             | _ , t -> ([],aux t ~name:None) in
                         bc (ty,arg) in
-                      ArgProof
-                       { proof_name = Some name;
-                         proof_id   = bo.proof_id;
-                         proof_kind = NoRecursive;
-                         proof_context = co; 
-                         proof_apply_context = bo.proof_apply_context;
-                         proof_conclude = bo.proof_conclude;
+                      K.ArgProof
+                       { bo with
+                         K.proof_name = Some name;
+                         K.proof_context = co; 
                        };
-                   else (Term arg) in
+                    else (K.Term arg) in
                   hdarg::(build_method_args (tlc,tla))
               | _ -> assert false in
           build_method_args (constructors1,args_for_cases) in
-          { proof_name = None;
-            proof_id   = gen_id seed;
-            proof_kind = NoRecursive;
-            proof_context = []; 
-            proof_apply_context = subproofs;
-            proof_conclude = 
-              { conclude_id = gen_id seed; 
-                conclude_aref = id;
-                conclude_method = "ByInduction";
-                conclude_args =
-                  Aux no_constructors 
-                  ::Term (C.AAppl id ((C.AConst(idc,uri,exp_named_subst))::params_and_IP))
+          { K.proof_name = None;
+            K.proof_id   = gen_id seed;
+            K.proof_context = []; 
+            K.proof_apply_context = subproofs;
+            K.proof_conclude = 
+              { K.conclude_id = gen_id seed; 
+                K.conclude_aref = id;
+                K.conclude_method = "ByInduction";
+                K.conclude_args =
+                  K.Aux no_constructors 
+                  ::K.Term (C.AAppl id ((C.AConst(idc,uri,exp_named_subst))::params_and_IP))
                   ::method_args@other_method_args;
-                conclude_conclusion = 
+                K.conclude_conclusion = 
                    try Some 
                      (Hashtbl.find ids_to_inner_types id).C2A.annsynthesized
                    with notfound -> None  
-              };
+              }
           } 
   | _ -> raise NotApplicable
 
 and rewrite seed name id li ids_to_inner_types ids_to_inner_sorts =
   let aux ?(name = None) = acic2content seed ~name:None ~ids_to_inner_types ~ids_to_inner_sorts in
   let module C2A = Cic2acic in
+  let module K = Content in
   let module C = Cic in
   match li with 
     C.AConst (sid,uri,exp_named_subst)::args ->
@@ -868,71 +765,130 @@ and rewrite seed name id li ids_to_inner_types ids_to_inner_sorts =
             | a::tl -> 
                 let hd = 
                   if n = 0 then
-                   Premise
-                     { premise_id = gen_id seed;
-                       premise_xref = subproof.proof_id;
-                       premise_binder = None;
-                       premise_n = None
+                    K.Premise
+                     { K.premise_id = gen_id seed;
+                       K.premise_xref = subproof.K.proof_id;
+                       K.premise_binder = None;
+                       K.premise_n = None
                      }
-                 else 
-                   let aid = get_id a in
-                   let asort = (try (Hashtbl.find ids_to_inner_sorts aid)
+                  else 
+                    let aid = get_id a in
+                    let asort = (try (Hashtbl.find ids_to_inner_sorts aid)
                       with Not_found -> "Type") in
                     if asort = "Prop" then
-                     ArgProof (aux a)
-                   else Term a in
-               hd::(ma_aux (n-1) tl) in
+                      K.ArgProof (aux a)
+                    else K.Term a in
+                hd::(ma_aux (n-1) tl) in
           (ma_aux 3 args) in 
-          { proof_name = None;
-            proof_id   = gen_id seed;
-            proof_kind = NoRecursive;
-            proof_context = []; 
-            proof_apply_context = [subproof];
-            proof_conclude = 
-              { conclude_id = gen_id seed; 
-                conclude_aref = id;
-                conclude_method = "Rewrite";
-                conclude_args = 
-                  Term (C.AConst (sid,uri,exp_named_subst))::method_args;
-                conclude_conclusion = 
+          { K.proof_name = None;
+            K.proof_id   = gen_id seed;
+            K.proof_context = []; 
+            K.proof_apply_context = [subproof];
+            K.proof_conclude = 
+              { K.conclude_id = gen_id seed; 
+                K.conclude_aref = id;
+                K.conclude_method = "Rewrite";
+                K.conclude_args = 
+                  K.Term (C.AConst (sid,uri,exp_named_subst))::method_args;
+                K.conclude_conclusion = 
                    try Some 
                      (Hashtbl.find ids_to_inner_types id).C2A.annsynthesized
                    with notfound -> None
-              };
+              }
           } 
       else raise NotApplicable
   | _ -> raise NotApplicable
+;; 
+
+let map_conjectures
+ seed ~ids_to_inner_sorts ~ids_to_inner_types (id,n,context,ty)
+=
+ let context' =
+  List.map
+   (function
+       (id,None) as item -> item
+     | (id,Some (name,Cic.ADecl t)) ->
+         id,
+          Some
+           (build_decl_item seed (get_id t) name t
+            ~ids_to_inner_sorts)
+     | (id,Some (name,Cic.ADef t)) ->
+         id,
+          Some
+           (build_def_item seed (get_id t) name t
+            ~ids_to_inner_sorts ~ids_to_inner_types)
+   ) context
+ in
+  (id,n,context',ty)
 ;;
 
-let annobj2content ~ids_to_inner_sorts ~ids_to_inner_types = 
+let rec annobj2content ~ids_to_inner_sorts ~ids_to_inner_types = 
   let module C = Cic in
+  let module K = Content in
   let module C2A = Cic2acic in
   let seed = ref 0 in
   function
-      C.ACurrentProof (id,idbody,n,conjectures,bo,ty,params) ->
-        assert false (* TO DO *)
-    | C.AConstant (id,idbody,n,bo,ty,params) ->
-        (match idbody with 
-           Some idb ->
-             let sort = 
-               (try Hashtbl.find ids_to_inner_sorts idb
-                with notfound -> "Type") in
-             if sort = "Prop" then
-               let proof = 
-                 (match bo with
-                    Some body -> 
-                      acic2content seed ~name:None ~ids_to_inner_sorts
-                        ~ids_to_inner_types body
-                  | None -> assert false) in
-               Theorem(id,idbody,n,Some proof,ty,params)
-             else 
-               Def(id,idbody,n,bo,ty,params)
-         | None -> Def(id,idbody,n,bo,ty,params))
-    | C.AVariable (id,n,bo,ty,params) ->
-        Variable(id,n,bo,ty,params)
-    | C.AInductiveDefinition (id,tys,params,nparams) ->
-       InductiveDefinition(id,tys,params,nparams)
+      C.ACurrentProof (_,_,n,conjectures,bo,ty,params) ->
+        (gen_id seed, params,
+          Some
+           (List.map
+             (map_conjectures seed ~ids_to_inner_sorts ~ids_to_inner_types)
+             conjectures),
+          `Def (K.Const,ty,
+            build_def_item seed (get_id bo) (C.Name n) bo 
+             ~ids_to_inner_sorts ~ids_to_inner_types))
+    | C.AConstant (_,_,n,Some bo,ty,params) ->
+         (gen_id seed, params, None,
+           `Def (K.Const,ty,
+             build_def_item seed (get_id bo) (C.Name n) bo 
+               ~ids_to_inner_sorts ~ids_to_inner_types))
+    | C.AConstant (id,_,n,None,ty,params) ->
+         (gen_id seed, params, None,
+           `Decl (K.Const,
+             build_decl_item seed id (C.Name n) ty 
+               ~ids_to_inner_sorts))
+    | C.AVariable (_,n,Some bo,ty,params) ->
+         (gen_id seed, params, None,
+           `Def (K.Var,ty,
+             build_def_item seed (get_id bo) (C.Name n) bo
+               ~ids_to_inner_sorts ~ids_to_inner_types))
+    | C.AVariable (id,n,None,ty,params) ->
+         (gen_id seed, params, None,
+           `Decl (K.Var,
+             build_decl_item seed id (C.Name n) ty
+              ~ids_to_inner_sorts))
+    | C.AInductiveDefinition (id,l,params,nparams) ->
+         (gen_id seed, params, None,
+            `Joint
+              { K.joint_id = gen_id seed;
+                K.joint_kind = `Inductive nparams;
+                K.joint_defs = List.map (build_inductive seed) l
+              }) 
+
+and
+    build_inductive seed = 
+     let module K = Content in
+      fun (_,n,b,ty,l) ->
+        `Inductive
+          { K.inductive_id = gen_id seed;
+            K.inductive_kind = b;
+            K.inductive_type = ty;
+            K.inductive_constructors = build_constructors seed l
+           }
 
+and 
+    build_constructors seed l =
+     let module K = Content in
+      List.map 
+       (fun (n,t) ->
+           { K.dec_name = Some n;
+             K.dec_id = gen_id seed;
+             K.dec_inductive = false;
+             K.dec_aref = "";
+             K.dec_type = t
+           }) l
+;;
+   
 (* 
 and 'term cinductiveType = 
  id * string * bool * 'term *                (* typename, inductive, arity *)
@@ -942,3 +898,4 @@ and 'term cconstructor =
  string * 'term    
 *)
 
+