]> matita.cs.unibo.it Git - helm.git/blobdiff - helm/ocaml/tactics/fourierR.ml
ocaml 3.09 transition
[helm.git] / helm / ocaml / tactics / fourierR.ml
index eeda7a862a83ce2d9a6771ff5d3c7d6f57f14e07..13dd9f410af6c74b2019842158a4a1b1a96a25c0 100644 (file)
@@ -31,6 +31,7 @@ des in
 *)
 
 open Fourier
+open ProofEngineTypes
 
 
 let debug x = print_string ("____ "^x) ; flush stdout;;
@@ -54,35 +55,35 @@ qui est z
 
 
 (**
-       The type for linear combinations
+        The type for linear combinations
 *)
-type flin = {fhom:(Cic.term , rational)Hashtbl.t;fcste:rational}            
+type flin = {fhom:(Cic.term , rational)Hashtbl.t;fcste:rational}             
 ;;
 
 (**
-       @return an empty flin
+        @return an empty flin
 *)
 let flin_zero () = {fhom = Hashtbl.create 50;fcste=r0}
 ;;
 
 (**
-       @param f a flin
-       @param x a Cic.term
-       @return the rational associated with x (coefficient)
+        @param f a flin
+        @param x a Cic.term
+        @return the rational associated with x (coefficient)
 *)
 let flin_coef f x = 
-       try
-               (Hashtbl.find f.fhom x)
-       with
-               _ -> r0
+        try
+                (Hashtbl.find f.fhom x)
+        with
+                _ -> r0
 ;;
-                       
+                        
 (**
-       Adds c to the coefficient of x
-       @param f a flin
-       @param x a Cic.term
-       @param c a rational
-       @return the new flin
+        Adds c to the coefficient of x
+        @param f a flin
+        @param x a Cic.term
+        @param c a rational
+        @return the new flin
 *)
 let flin_add f x c = 
     match x with
@@ -98,10 +99,10 @@ let flin_add f x c =
       f
 ;;
 (**
-       Adds c to f.fcste
-       @param f a flin
-       @param c a rational
-       @return the new flin
+        Adds c to f.fcste
+        @param f a flin
+        @param c a rational
+        @return the new flin
 *)
 let flin_add_cste f c =              
     {fhom=f.fhom;
@@ -109,12 +110,12 @@ let flin_add_cste f c =
 ;;
 
 (**
-       @return a empty flin with r1 in fcste
+        @return a empty flin with r1 in fcste
 *)
 let flin_one () = flin_add_cste (flin_zero()) r1;;
 
 (**
-       Adds two flin
+        Adds two flin
 *)
 let flin_plus f1 f2 = 
     let f3 = flin_zero() in
@@ -124,7 +125,7 @@ let flin_plus f1 f2 =
 ;;
 
 (**
-       Substracts two flin
+        Substracts two flin
 *)
 let flin_minus f1 f2 = 
     let f3 = flin_zero() in
@@ -134,7 +135,7 @@ let flin_minus f1 f2 =
 ;;
 
 (**
-       @return a times f
+        @return a times f
 *)
 let flin_emult a f =
     let f2 = flin_zero() in
@@ -147,46 +148,44 @@ let flin_emult a f =
 
 
 (**
-       @param t a term
-       @raise Failure if conversion is impossible
-       @return rational proiection of t
+        @param t a term
+        @raise Failure if conversion is impossible
+        @return rational proiection of t
 *)
 let rec rational_of_term t =
   (* fun to apply f to the first and second rational-term of l *)
   let rat_of_binop f l =
-       let a = List.hd l and
-           b = List.hd(List.tl l) in
-       f (rational_of_term a) (rational_of_term b)
+          let a = List.hd l and
+            b = List.hd(List.tl l) in
+        f (rational_of_term a) (rational_of_term b)
   in
   (* as before, but f is unary *)
   let rat_of_unop f l =
-       f (rational_of_term (List.hd l))
+          f (rational_of_term (List.hd l))
   in
   match t with
   | Cic.Cast (t1,t2) -> (rational_of_term t1)
   | Cic.Appl (t1::next) ->
         (match t1 with
            Cic.Const (u,boh) ->
-               (match (UriManager.string_of_uri u) with
-                "cic:/Coq/Reals/Rdefinitions/Ropp.con" -> 
-                     rat_of_unop rop next 
-               |"cic:/Coq/Reals/Rdefinitions/Rinv.con" -> 
+            if UriManager.eq u HelmLibraryObjects.Reals.ropp_URI then
+                      rat_of_unop rop next 
+            else if UriManager.eq u HelmLibraryObjects.Reals.rinv_URI then
                       rat_of_unop rinv next 
-                |"cic:/Coq/Reals/Rdefinitions/Rmult.con" -> 
+            else if UriManager.eq u HelmLibraryObjects.Reals.rmult_URI then
                       rat_of_binop rmult next
-                |"cic:/Coq/Reals/Rdefinitions/Rdiv.con" -> 
+            else if UriManager.eq u HelmLibraryObjects.Reals.rdiv_URI then
                       rat_of_binop rdiv next
-                |"cic:/Coq/Reals/Rdefinitions/Rplus.con" -> 
+            else if UriManager.eq u HelmLibraryObjects.Reals.rplus_URI then
                       rat_of_binop rplus next
-                |"cic:/Coq/Reals/Rdefinitions/Rminus.con" -> 
+            else if UriManager.eq u HelmLibraryObjects.Reals.rminus_URI then
                       rat_of_binop rminus next
-                | _ -> failwith "not a rational")
+            else failwith "not a rational"
           | _ -> failwith "not a rational")
   | Cic.Const (u,boh) ->
-        (match (UriManager.string_of_uri u) with
-              "cic:/Coq/Reals/Rdefinitions/R1.con" -> r1
-              |"cic:/Coq/Reals/Rdefinitions/R0.con" -> r0
-              |  _ -> failwith "not a rational")
+        if UriManager.eq u HelmLibraryObjects.Reals.r1_URI then r1
+        else if UriManager.eq u HelmLibraryObjects.Reals.r0_URI then r0
+        else failwith "not a rational"
   |  _ -> failwith "not a rational"
 ;;
 
@@ -202,110 +201,108 @@ let fails f a =
  ;;
 
 let rec flin_of_term t =
-       let fl_of_binop f l =
-               let a = List.hd l and
-                   b = List.hd(List.tl l) in
-               f (flin_of_term a)  (flin_of_term b)
-       in
+        let fl_of_binop f l =
+                let a = List.hd l and
+                    b = List.hd(List.tl l) in
+                f (flin_of_term a)  (flin_of_term b)
+        in
   try(
     match t with
   | Cic.Cast (t1,t2) -> (flin_of_term t1)
   | Cic.Appl (t1::next) ->
-       begin
-       match t1 with
+        begin
+        match t1 with
         Cic.Const (u,boh) ->
             begin
-           match (UriManager.string_of_uri u) with
-            "cic:/Coq/Reals/Rdefinitions/Ropp.con" -> 
+             if UriManager.eq u HelmLibraryObjects.Reals.ropp_URI then
                   flin_emult (rop r1) (flin_of_term (List.hd next))
-           |"cic:/Coq/Reals/Rdefinitions/Rplus.con"-> 
+             else if UriManager.eq u HelmLibraryObjects.Reals.rplus_URI then
                   fl_of_binop flin_plus next 
-           |"cic:/Coq/Reals/Rdefinitions/Rminus.con"->
+             else if UriManager.eq u HelmLibraryObjects.Reals.rminus_URI then
                   fl_of_binop flin_minus next
-           |"cic:/Coq/Reals/Rdefinitions/Rmult.con"->
-               begin
-               let arg1 = (List.hd next) and
-                   arg2 = (List.hd(List.tl next)) 
-               in
-               if fails rational_of_term arg1 
-                  then
-                  if fails rational_of_term arg2
-                     then
-                     ( (* prodotto tra 2 incognite ????? impossibile*)
-                     failwith "Sistemi lineari!!!!\n" 
-                     )
-                     else
-                     (
-                     match arg1 with
-                     Cic.Rel(n) -> (*trasformo al volo*)
-                                   (flin_add (flin_zero()) arg1 (rational_of_term arg2))
-                     |_-> (* test this *)
-                          let tmp = flin_of_term arg1 in
-                          flin_emult  (rational_of_term arg2) (tmp)
-                     )
-                  else
-                  if fails rational_of_term arg2
-                     then
-                     (
-                     match arg2 with
-                     Cic.Rel(n) -> (*trasformo al volo*)
-                                   (flin_add (flin_zero()) arg2 (rational_of_term arg1))
-                     |_-> (* test this *)
-                          let tmp = flin_of_term arg2 in
-                          flin_emult (rational_of_term arg1) (tmp)
-
-                     )
-                     else
-                     (  (*prodotto tra razionali*)
-                     (flin_add_cste (flin_zero()) (rmult (rational_of_term arg1) (rational_of_term arg2)))  
-                     )
-                       (*try
-                       begin
-                       (*let a = rational_of_term arg1 in
-                       debug("ho fatto rational of term di "^CicPp.ppterm arg1^
-                        " e ho ottenuto "^string_of_int a.num^"/"^string_of_int a.den^"\n");*)
-                       let a = flin_of_term arg1  
-                       try 
-                               begin
-                               let b = (rational_of_term arg2) in
-                               debug("ho fatto rational of term di "^CicPp.ppterm arg2^
-                                " e ho ottenuto "^string_of_int b.num^"/"^string_of_int b.den^"\n");
-                               (flin_add_cste (flin_zero()) (rmult a b))
-                               end
-                       with 
-                               _ -> debug ("ho fallito2 su "^CicPp.ppterm arg2^"\n");
-                                    (flin_add (flin_zero()) arg2 a)
-                       end
-               with 
-                       _-> debug ("ho fallito1 su "^CicPp.ppterm arg1^"\n");
-                           (flin_add(flin_zero()) arg1 (rational_of_term arg2))
-                           *)
-               end
-           |"cic:/Coq/Reals/Rdefinitions/Rinv.con"->
-              let a=(rational_of_term (List.hd next)) in
-              flin_add_cste (flin_zero()) (rinv a)
-           |"cic:/Coq/Reals/Rdefinitions/Rdiv.con"->
-               begin
-               let b=(rational_of_term (List.hd(List.tl next))) in
-               try 
-                       begin
-                       let a = (rational_of_term (List.hd next)) in
-                       (flin_add_cste (flin_zero()) (rdiv a b))
-                       end
-               with 
-                       _-> (flin_add (flin_zero()) (List.hd next) (rinv b))
-               end
-            |_->assert false
-           end
-       |_ -> assert false
-       end
+             else if UriManager.eq u HelmLibraryObjects.Reals.rmult_URI then
+                     begin
+                let arg1 = (List.hd next) and
+                    arg2 = (List.hd(List.tl next)) 
+                in
+                if fails rational_of_term arg1 
+                   then
+                   if fails rational_of_term arg2
+                      then
+                      ( (* prodotto tra 2 incognite ????? impossibile*)
+                      failwith "Sistemi lineari!!!!\n" 
+                      )
+                      else
+                      (
+                      match arg1 with
+                      Cic.Rel(n) -> (*trasformo al volo*)
+                                    (flin_add (flin_zero()) arg1 (rational_of_term arg2))
+                       |_-> (* test this *)
+                           let tmp = flin_of_term arg1 in
+                           flin_emult  (rational_of_term arg2) (tmp)
+                      )
+                   else
+                   if fails rational_of_term arg2
+                      then
+                      (
+                      match arg2 with
+                      Cic.Rel(n) -> (*trasformo al volo*)
+                                    (flin_add (flin_zero()) arg2 (rational_of_term arg1))
+                       |_-> (* test this *)
+                           let tmp = flin_of_term arg2 in
+                           flin_emult (rational_of_term arg1) (tmp)
+
+                      )
+                      else
+                      (  (*prodotto tra razionali*)
+                      (flin_add_cste (flin_zero()) (rmult (rational_of_term arg1) (rational_of_term arg2)))  
+                      )
+                          (*try
+                        begin
+                        (*let a = rational_of_term arg1 in
+                        debug("ho fatto rational of term di "^CicPp.ppterm arg1^
+                         " e ho ottenuto "^string_of_int a.num^"/"^string_of_int a.den^"\n");*)
+                        let a = flin_of_term arg1  
+                           try 
+                                begin
+                                let b = (rational_of_term arg2) in
+                                debug("ho fatto rational of term di "^CicPp.ppterm arg2^
+                                 " e ho ottenuto "^string_of_int b.num^"/"^string_of_int b.den^"\n");
+                                    (flin_add_cste (flin_zero()) (rmult a b))
+                                end
+                           with 
+                                _ -> debug ("ho fallito2 su "^CicPp.ppterm arg2^"\n");
+                                     (flin_add (flin_zero()) arg2 a)
+                        end
+                      with 
+                        _-> debug ("ho fallito1 su "^CicPp.ppterm arg1^"\n");
+                            (flin_add(flin_zero()) arg1 (rational_of_term arg2))
+                            *)
+                end
+            else if UriManager.eq u HelmLibraryObjects.Reals.rinv_URI then
+               let a=(rational_of_term (List.hd next)) in
+               flin_add_cste (flin_zero()) (rinv a)
+            else if UriManager.eq u HelmLibraryObjects.Reals.rdiv_URI then
+                    begin
+                      let b=(rational_of_term (List.hd(List.tl next))) in
+                       try 
+                        begin
+                        let a = (rational_of_term (List.hd next)) in
+                        (flin_add_cste (flin_zero()) (rdiv a b))
+                        end
+                       with 
+                        _-> (flin_add (flin_zero()) (List.hd next) (rinv b))
+                end
+            else assert false
+            end
+        |_ -> assert false
+        end
   | Cic.Const (u,boh) ->
         begin
-       match (UriManager.string_of_uri u) with
-        "cic:/Coq/Reals/Rdefinitions/R1.con" -> flin_one ()
-        |"cic:/Coq/Reals/Rdefinitions/R0.con" -> flin_zero ()
-        |_-> assert false
-       end
+         if UriManager.eq u HelmLibraryObjects.Reals.r1_URI then flin_one ()
+         else if UriManager.eq u HelmLibraryObjects.Reals.r0_URI then flin_zero ()
+         else assert false
+        end
   |_-> assert false)
   with _ -> debug("eccezione = "^CicPp.ppterm t^"\n");flin_add (flin_zero()) t r1
 ;;
@@ -315,9 +312,9 @@ let flin_of_constr = flin_of_term;;
 *)
 
 (**
-       Translates a flin to (c,x) list
-       @param f a flin
-       @return something like (c1,x1)::(c2,x2)::...::(cn,xn)
+        Translates a flin to (c,x) list
+        @param f a flin
+        @return something like (c1,x1)::(c2,x2)::...::(cn,xn)
 *)
 let flin_to_alist f =
     let res=ref [] in
@@ -329,7 +326,7 @@ let flin_to_alist f =
 *)
 
 (**
-       The structure for ineq
+        The structure for ineq
 *)
 type hineq={hname:Cic.term; (* le nom de l'hypothèse *)
             htype:string; (* Rlt, Rgt, Rle, Rge, eqTLR ou eqTRL *)
@@ -349,67 +346,64 @@ let ineq1_of_term (h,t) =
          let arg2= List.hd(List.tl next) in
          (match t1 with (* match t1 *)
            Cic.Const (u,boh) ->
-            (match UriManager.string_of_uri u with (* match u *)
-                "cic:/Coq/Reals/Rdefinitions/Rlt.con" ->
-                          [{hname=h;
+             if UriManager.eq u HelmLibraryObjects.Reals.rlt_URI then
+                            [{hname=h;
                            htype="Rlt";
-                          hleft=arg1;
-                          hright=arg2;
-                          hflin= flin_minus (flin_of_term arg1)
+                           hleft=arg1;
+                           hright=arg2;
+                           hflin= flin_minus (flin_of_term arg1)
                                              (flin_of_term arg2);
-                          hstrict=true}]
-               |"cic:/Coq/Reals/Rdefinitions/Rgt.con" ->
-                          [{hname=h;
+                           hstrict=true}]
+             else if UriManager.eq u HelmLibraryObjects.Reals.rgt_URI then
+                           [{hname=h;
                            htype="Rgt";
-                          hleft=arg2;
-                          hright=arg1;
-                          hflin= flin_minus (flin_of_term arg2)
+                           hleft=arg2;
+                           hright=arg1;
+                           hflin= flin_minus (flin_of_term arg2)
                                              (flin_of_term arg1);
-                          hstrict=true}]
-               |"cic:/Coq/Reals/Rdefinitions/Rle.con" ->
+                           hstrict=true}]
+             else if UriManager.eq u HelmLibraryObjects.Reals.rle_URI then
                            [{hname=h;
                            htype="Rle";
-                          hleft=arg1;
-                          hright=arg2;
-                          hflin= flin_minus (flin_of_term arg1)
+                           hleft=arg1;
+                           hright=arg2;
+                           hflin= flin_minus (flin_of_term arg1)
                                              (flin_of_term arg2);
-                          hstrict=false}]
-               |"cic:/Coq/Reals/Rdefinitions/Rge.con" ->
+                           hstrict=false}]
+             else if UriManager.eq u HelmLibraryObjects.Reals.rge_URI then
                            [{hname=h;
                            htype="Rge";
-                          hleft=arg2;
-                          hright=arg1;
-                          hflin= flin_minus (flin_of_term arg2)
+                           hleft=arg2;
+                           hright=arg1;
+                           hflin= flin_minus (flin_of_term arg2)
                                              (flin_of_term arg1);
-                          hstrict=false}]
-                |_->assert false)(* match u *)
+                           hstrict=false}]
+             else assert false
           | Cic.MutInd (u,i,o) ->
-              (match UriManager.string_of_uri u with 
-                "cic:/Coq/Init/Logic_Type/eqT.ind" ->  
-                          let t0= arg1 in
+             if UriManager.eq u HelmLibraryObjects.Logic.eq_URI then
+                            let t0= arg1 in
                            let arg1= arg2 in
                            let arg2= List.hd(List.tl (List.tl next)) in
-                   (match t0 with
+                    (match t0 with
                          Cic.Const (u,boh) ->
-                          (match UriManager.string_of_uri u with
-                             "cic:/Coq/Reals/Rdefinitions/R.con"->
+                           if UriManager.eq u HelmLibraryObjects.Reals.r_URI then
                          [{hname=h;
                            htype="eqTLR";
-                          hleft=arg1;
-                          hright=arg2;
-                          hflin= flin_minus (flin_of_term arg1)
+                           hleft=arg1;
+                           hright=arg2;
+                           hflin= flin_minus (flin_of_term arg1)
                                              (flin_of_term arg2);
-                          hstrict=false};
+                           hstrict=false};
                           {hname=h;
                            htype="eqTRL";
-                          hleft=arg2;
-                          hright=arg1;
-                          hflin= flin_minus (flin_of_term arg2)
+                           hleft=arg2;
+                           hright=arg1;
+                           hflin= flin_minus (flin_of_term arg2)
                                              (flin_of_term arg1);
-                          hstrict=false}]
-                           |_-> assert false)
-                         |_-> assert false)
-                   |_-> assert false)
+                           hstrict=false}]
+                          else assert false
+                        |_-> assert false)
+                  else assert false
           |_-> assert false)(* match t1 *)
         |_-> assert false (* match t *)
 ;;
@@ -430,12 +424,12 @@ let rec print_sys l =
  match l with
  [] -> ()
  | (a,b)::next -> (print_rl a;
-               print_string (if b=true then "strict\n"else"\n");
-               print_sys next)
+                 print_string (if b=true then "strict\n"else"\n");
+                print_sys next)
  ;;
 
 (*let print_hash h =
-       Hashtbl.iter (fun x y -> print_string ("("^"-"^","^"-"^")")) h
+        Hashtbl.iter (fun x y -> print_string ("("^"-"^","^"-"^")")) h
 ;;*)
 
 let fourier_lineq lineq1 = 
@@ -443,12 +437,12 @@ let fourier_lineq lineq1 =
    let hvar=Hashtbl.create 50 in (* la table des variables des inĂ©quations *)
    List.iter (fun f ->
                Hashtbl.iter (fun x c ->
-                                try (Hashtbl.find hvar x;())
-                                with _-> nvar:=(!nvar)+1;
-                                         Hashtbl.add hvar x (!nvar);
-                                         debug("aggiungo una var "^
-                                          string_of_int !nvar^" per "^
-                                           CicPp.ppterm x^"\n"))
+                                 try (Hashtbl.find hvar x;())
+                                 with _-> nvar:=(!nvar)+1;
+                                             Hashtbl.add hvar x (!nvar);
+                                          debug("aggiungo una var "^
+                                           string_of_int !nvar^" per "^
+                                            CicPp.ppterm x^"\n"))
                             f.hflin.fhom)
              lineq1;
    (*print_hash hvar;*)
@@ -471,25 +465,19 @@ i.e. on obtient une contradiction.
 *)
 
 
-let _eqT = Cic.MutInd((UriManager.uri_of_string
- "cic:/Coq/Init/Logic_Type/eqT.ind"), 0, []) ;;
-let _False = Cic.MutInd ((UriManager.uri_of_string
- "cic:/Coq/Init/Logic/False.ind"), 0, []) ;;
-let _not = Cic.Const ((UriManager.uri_of_string
- "cic:/Coq/Init/Logic/not.con"), []);;
-let _R0 = Cic.Const ((UriManager.uri_of_string 
- "cic:/Coq/Reals/Rdefinitions/R0.con"), []) ;;
-let _R1 = Cic.Const ((UriManager.uri_of_string 
- "cic:/Coq/Reals/Rdefinitions/R1.con"), []) ;;
-let _R = Cic.Const ((UriManager.uri_of_string 
- "cic:/Coq/Reals/Rdefinitions/R.con"), []) ;;
+let _eqT = Cic.MutInd(HelmLibraryObjects.Logic.eq_URI, 0, []) ;;
+let _False = Cic.MutInd (HelmLibraryObjects.Logic.false_URI, 0, []) ;;
+let _not = Cic.Const (HelmLibraryObjects.Logic.not_URI,[]);;
+let _R0 = Cic.Const (HelmLibraryObjects.Reals.r0_URI,[]);;
+let _R1 = Cic.Const (HelmLibraryObjects.Reals.r1_URI,[]);;
+let _R = Cic.Const (HelmLibraryObjects.Reals.r_URI,[]);;
 let _Rfourier_eqLR_to_le=Cic.Const ((UriManager.uri_of_string 
  "cic:/Coq/fourier/Fourier_util/Rfourier_eqLR_to_le.con"), []) ;;
 let _Rfourier_eqRL_to_le=Cic.Const ((UriManager.uri_of_string 
  "cic:/Coq/fourier/Fourier_util/Rfourier_eqRL_to_le.con"), []) ;;
 let _Rfourier_ge_to_le  =Cic.Const ((UriManager.uri_of_string 
  "cic:/Coq/fourier/Fourier_util/Rfourier_ge_to_le.con"), []) ;;
-let _Rfourier_gt_to_lt         =Cic.Const ((UriManager.uri_of_string 
+let _Rfourier_gt_to_lt         =Cic.Const ((UriManager.uri_of_string 
  "cic:/Coq/fourier/Fourier_util/Rfourier_gt_to_lt.con"), []) ;;
 let _Rfourier_le=Cic.Const ((UriManager.uri_of_string 
  "cic:/Coq/fourier/Fourier_util/Rfourier_le.con"), []) ;;
@@ -511,12 +499,9 @@ let _Rfourier_not_le_gt = Cic.Const ((UriManager.uri_of_string
  "cic:/Coq/fourier/Fourier_util/Rfourier_not_le_gt.con"), []) ;;
 let _Rfourier_not_lt_ge = Cic.Const ((UriManager.uri_of_string 
  "cic:/Coq/fourier/Fourier_util/Rfourier_not_lt_ge.con"), []) ;;
-let _Rinv  = Cic.Const ((UriManager.uri_of_string 
- "cic:/Coq/Reals/Rdefinitions/Rinv.con"), []) ;;
-let _Rinv_R1 = Cic.Const((UriManager.uri_of_string 
- "cic:/Coq/Reals/Rbase/Rinv_R1.con" ), []) ;;
-let _Rle = Cic.Const ((UriManager.uri_of_string 
- "cic:/Coq/Reals/Rdefinitions/Rle.con"), []) ;;
+let _Rinv  = Cic.Const (HelmLibraryObjects.Reals.rinv_URI, []);;
+let _Rinv_R1 = Cic.Const(HelmLibraryObjects.Reals.rinv_r1_URI, []);;
+let _Rle = Cic.Const (HelmLibraryObjects.Reals.rle_URI, []);;
 let _Rle_mult_inv_pos =  Cic.Const ((UriManager.uri_of_string 
  "cic:/Coq/fourier/Fourier_util/Rle_mult_inv_pos.con"), []) ;;
 let _Rle_not_lt = Cic.Const ((UriManager.uri_of_string 
@@ -525,10 +510,7 @@ let _Rle_zero_1 = Cic.Const ((UriManager.uri_of_string
  "cic:/Coq/fourier/Fourier_util/Rle_zero_1.con"), []) ;;
 let _Rle_zero_pos_plus1 =  Cic.Const ((UriManager.uri_of_string 
  "cic:/Coq/fourier/Fourier_util/Rle_zero_pos_plus1.con"), []) ;;
-(*let _Rle_zero_zero = Cic.Const ((UriManager.uri_of_string 
- "cic:/Coq/fourier/Fourier_util/Rle_zero_zero.con"), []) ;;*)
-let _Rlt = Cic.Const ((UriManager.uri_of_string 
- "cic:/Coq/Reals/Rdefinitions/Rlt.con"), []) ;;
+let _Rlt = Cic.Const (HelmLibraryObjects.Reals.rlt_URI, []);;
 let _Rlt_mult_inv_pos = Cic.Const ((UriManager.uri_of_string 
  "cic:/Coq/fourier/Fourier_util/Rlt_mult_inv_pos.con"), []) ;;
 let _Rlt_not_le =  Cic.Const ((UriManager.uri_of_string 
@@ -537,20 +519,16 @@ let _Rlt_zero_1 = Cic.Const ((UriManager.uri_of_string
  "cic:/Coq/fourier/Fourier_util/Rlt_zero_1.con"), []) ;;
 let _Rlt_zero_pos_plus1 = Cic.Const ((UriManager.uri_of_string 
  "cic:/Coq/fourier/Fourier_util/Rlt_zero_pos_plus1.con"), []) ;;
-let _Rminus = Cic.Const ((UriManager.uri_of_string 
- "cic:/Coq/Reals/Rdefinitions/Rminus.con"), []) ;;
-let _Rmult = Cic.Const ((UriManager.uri_of_string 
- "cic:/Coq/Reals/Rdefinitions/Rmult.con"), []) ;;
+let _Rminus = Cic.Const (HelmLibraryObjects.Reals.rminus_URI, []);;
+let _Rmult = Cic.Const (HelmLibraryObjects.Reals.rmult_URI, []);;
 let _Rnot_le_le =Cic.Const ((UriManager.uri_of_string 
  "cic:/Coq/fourier/Fourier_util/Rnot_le_le.con"), []) ;;
 let _Rnot_lt0 = Cic.Const ((UriManager.uri_of_string 
  "cic:/Coq/fourier/Fourier_util/Rnot_lt0.con"), []) ;;
 let _Rnot_lt_lt =Cic.Const ((UriManager.uri_of_string 
  "cic:/Coq/fourier/Fourier_util/Rnot_lt_lt.con"), []) ;;
-let _Ropp = Cic.Const ((UriManager.uri_of_string 
- "cic:/Coq/Reals/Rdefinitions/Ropp.con"), []) ;;
-let _Rplus = Cic.Const ((UriManager.uri_of_string 
- "cic:/Coq/Reals/Rdefinitions/Rplus.con"), []) ;;
+let _Ropp = Cic.Const (HelmLibraryObjects.Reals.ropp_URI, []);;
+let _Rplus = Cic.Const (HelmLibraryObjects.Reals.rplus_URI, []);;
 
 (******************************************************************************)
 
@@ -569,15 +547,15 @@ let rec int_to_real_aux n =
     0 -> _R0 (* o forse R0 + R0 ????? *)
   | 1 -> _R1
   | _ -> Cic.Appl [ _Rplus ; _R1 ; int_to_real_aux (n-1) ]
-;;     
-       
+;;        
+        
 
 let int_to_real n =
    let x = int_to_real_aux (abs n) in
    if n < 0 then
-       Cic.Appl [ _Ropp ; x ] 
+           Cic.Appl [ _Ropp ; x ] 
    else
-       x
+           x
 ;;
 
 
@@ -592,44 +570,50 @@ let rational_to_real x =
 (* preuve que 0<n*1/d
 *)
 
-let tac_zero_inf_pos (n,d) ~status =
+let tac_zero_inf_pos (n,d) =
+ let tac_zero_inf_pos (n,d) status =
    (*let cste = pf_parse_constr gl in*)
-   let pall str ~status:(proof,goal) t =
+   let pall str (proof,goal) t =
      debug ("tac "^str^" :\n" );
      let curi,metasenv,pbo,pty = proof in
      let metano,context,ty = CicUtil.lookup_meta goal metasenv in
      debug ("th = "^ CicPp.ppterm t ^"\n"); 
      debug ("ty = "^ CicPp.ppterm ty^"\n"); 
    in
-   let tacn=ref 
-     (fun ~status -> pall "n0" ~status _Rlt_zero_1 ;
-       PrimitiveTactics.apply_tac ~term:_Rlt_zero_1 ~status ) in
-   let tacd=ref 
-     (fun ~status -> pall "d0" ~status _Rlt_zero_1 ;
-       PrimitiveTactics.apply_tac ~term:_Rlt_zero_1 ~status ) in
+   let tacn=ref (mk_tactic (fun status -> 
+        pall "n0" status _Rlt_zero_1 ;
+        apply_tactic (PrimitiveTactics.apply_tac ~term:_Rlt_zero_1) status )) in
+   let tacd=ref (mk_tactic (fun status -> 
+        pall "d0" status _Rlt_zero_1 ;
+        apply_tactic (PrimitiveTactics.apply_tac ~term:_Rlt_zero_1) status )) in
 
 
   for i=1 to n-1 do 
-       tacn:=(Tacticals.then_ ~start:(fun ~status -> pall ("n"^string_of_int i) 
-        ~status _Rlt_zero_pos_plus1;
-        PrimitiveTactics.apply_tac ~term:_Rlt_zero_pos_plus1 ~status) 
-         ~continuation:!tacn); 
+       tacn:=(Tacticals.then_ 
+        ~start:(mk_tactic (fun status -> 
+          pall ("n"^string_of_int i) status _Rlt_zero_pos_plus1;
+          apply_tactic 
+           (PrimitiveTactics.apply_tac ~term:_Rlt_zero_pos_plus1)
+           status))
+        ~continuation:!tacn); 
   done;
   for i=1 to d-1 do
-       tacd:=(Tacticals.then_ ~start:(fun ~status -> pall "d" 
-        ~status _Rlt_zero_pos_plus1 ;PrimitiveTactics.apply_tac 
-        ~term:_Rlt_zero_pos_plus1 ~status) ~continuation:!tacd); 
+       tacd:=(Tacticals.then_ 
+        ~start:(mk_tactic (fun status -> 
+          pall "d" status _Rlt_zero_pos_plus1 ;
+          apply_tactic 
+           (PrimitiveTactics.apply_tac ~term:_Rlt_zero_pos_plus1) status)) 
+        ~continuation:!tacd); 
   done;
 
-
-
 debug("TAC ZERO INF POS\n");
-
-(Tacticals.thens ~start:(PrimitiveTactics.apply_tac ~term:_Rlt_mult_inv_pos) 
-  ~continuations:[
-   !tacn ;
-   !tacd ] 
-  ~status)
+  apply_tactic 
+  (Tacticals.thens 
+    ~start:(PrimitiveTactics.apply_tac ~term:_Rlt_mult_inv_pos)
+    ~continuations:[!tacn ;!tacd ] )
+  status
+ in
+  mk_tactic (tac_zero_inf_pos (n,d))
 ;;
 
 
@@ -637,30 +621,32 @@ debug("TAC ZERO INF POS\n");
 (* preuve que 0<=n*1/d
 *)
  
-let tac_zero_infeq_pos gl (n,d) ~status =
- (*let cste = pf_parse_constr gl in*)
- debug("inizio tac_zero_infeq_pos\n");
- let tacn = ref 
-  (*(if n=0 then
-    (PrimitiveTactics.apply_tac ~term:_Rle_zero_zero ) 
-   else*)
-    (PrimitiveTactics.apply_tac ~term:_Rle_zero_1 )
- (* ) *)
-  in
-  let tacd=ref (PrimitiveTactics.apply_tac ~term:_Rlt_zero_1 ) in
-  for i=1 to n-1 do 
-      tacn:=(Tacticals.then_ ~start:(PrimitiveTactics.apply_tac 
-       ~term:_Rle_zero_pos_plus1) ~continuation:!tacn); 
-  done;
-  for i=1 to d-1 do
-      tacd:=(Tacticals.then_ ~start:(PrimitiveTactics.apply_tac 
-       ~term:_Rlt_zero_pos_plus1) ~continuation:!tacd); 
-  done;
-  let r = 
-  (Tacticals.thens ~start:(PrimitiveTactics.apply_tac 
-   ~term:_Rle_mult_inv_pos) ~continuations:[!tacn;!tacd]) ~status in
-   debug("fine tac_zero_infeq_pos\n");
-   r
+let tac_zero_infeq_pos gl (n,d) =
+ let tac_zero_infeq_pos gl (n,d) status =
+  (*let cste = pf_parse_constr gl in*)
+  debug("inizio tac_zero_infeq_pos\n");
+  let tacn = ref 
+   (*(if n=0 then
+     (PrimitiveTactics.apply_tac ~term:_Rle_zero_zero ) 
+    else*)
+     (PrimitiveTactics.apply_tac ~term:_Rle_zero_1 )
+  (* ) *)
+   in
+   let tacd=ref (PrimitiveTactics.apply_tac ~term:_Rlt_zero_1 ) in
+   for i=1 to n-1 do 
+       tacn:=(Tacticals.then_ ~start:(PrimitiveTactics.apply_tac 
+        ~term:_Rle_zero_pos_plus1) ~continuation:!tacn); 
+   done;
+   for i=1 to d-1 do
+       tacd:=(Tacticals.then_ ~start:(PrimitiveTactics.apply_tac 
+        ~term:_Rlt_zero_pos_plus1) ~continuation:!tacd); 
+   done;
+   apply_tactic 
+    (Tacticals.thens 
+     ~start:(PrimitiveTactics.apply_tac ~term:_Rle_mult_inv_pos) 
+     ~continuations:[!tacn;!tacd]) status 
+ in
+  mk_tactic (tac_zero_infeq_pos gl (n,d))
 ;;
 
 
@@ -668,73 +654,67 @@ let tac_zero_infeq_pos gl (n,d) ~status =
 (* preuve que 0<(-n)*(1/d) => False 
 *)
 
-let tac_zero_inf_false gl (n,d) ~status=
-  debug("inizio tac_zero_inf_false\n");
-    if n=0 then 
-     (debug "1\n";let r =(PrimitiveTactics.apply_tac ~term:_Rnot_lt0 ~status) in
-     debug("fine\n");
-     r)
-    else
-     (debug "2\n";let r = (Tacticals.then_ ~start:(
-       fun ~status:(proof,goal as status) -> 
+let tac_zero_inf_false gl (n,d) =
+ let tac_zero_inf_false gl (n,d) status =
+   if n=0 then 
+    apply_tactic (PrimitiveTactics.apply_tac ~term:_Rnot_lt0) status
+   else
+    apply_tactic (Tacticals.then_ 
+     ~start:( mk_tactic (fun status -> 
+       let (proof, goal) = status in
        let curi,metasenv,pbo,pty = proof in
        let metano,context,ty = CicUtil.lookup_meta goal metasenv in
-         debug("!!!!!!!!!1: unify "^CicPp.ppterm _Rle_not_lt^" with "
-         ^ CicPp.ppterm ty ^"\n");
-       let r = PrimitiveTactics.apply_tac ~term:_Rle_not_lt ~status in
-       debug("!!!!!!!!!2\n");
-       r
-       )
-     ~continuation:(tac_zero_infeq_pos gl (-n,d))) ~status in
-     debug("fine\n");
-     r
-     )
+        apply_tactic (PrimitiveTactics.apply_tac ~term:_Rle_not_lt) status))
+     ~continuation:(tac_zero_infeq_pos gl (-n,d))) 
+    status
+ in
+  mk_tactic (tac_zero_inf_false gl (n,d))
 ;;
 
 (* preuve que 0<=n*(1/d) => False ; n est negatif
 *)
 
-let tac_zero_infeq_false gl (n,d) ~status:(proof,goal as status)=
-debug("stat tac_zero_infeq_false\n");
-let r = 
-     let curi,metasenv,pbo,pty = proof in
-     let metano,context,ty = CicUtil.lookup_meta goal metasenv in
-     
-     debug("faccio fold di " ^ CicPp.ppterm
-            (Cic.Appl
-              [_Rle ; _R0 ;
-               Cic.Appl
-                [_Rmult ; int_to_real n ; Cic.Appl [_Rinv ; int_to_real d]]
-              ]
-            ) ^ "\n") ;
-     debug("apply di _Rlt_not_le a "^ CicPp.ppterm ty ^"\n");
-     (*CSC: Patch to undo the over-simplification of RewriteSimpl *)
-     Tacticals.then_
-      ~start:
-        (ReductionTactics.fold_tac ~reduction:CicReduction.whd
-          ~also_in_hypotheses:false
-          ~term:
+let tac_zero_infeq_false gl (n,d) =
+ let tac_zero_infeq_false gl (n,d) status =
+  let (proof, goal) = status in
+  let curi,metasenv,pbo,pty = proof in
+  let metano,context,ty = CicUtil.lookup_meta goal metasenv in
+  
+  debug("faccio fold di " ^ CicPp.ppterm
+         (Cic.Appl
+           [_Rle ; _R0 ;
+            Cic.Appl
+             [_Rmult ; int_to_real n ; Cic.Appl [_Rinv ; int_to_real d]]
+           ]
+         ) ^ "\n") ;
+  debug("apply di _Rlt_not_le a "^ CicPp.ppterm ty ^"\n");
+  (*CSC: Patch to undo the over-simplification of RewriteSimpl *)
+  apply_tactic 
+   (Tacticals.then_
+    ~start:
+      (ReductionTactics.fold_tac
+        ~reduction:(const_lazy_reduction CicReduction.whd)
+        ~pattern:(ProofEngineTypes.conclusion_pattern None)
+        ~term:
+          (const_lazy_term
             (Cic.Appl
-              [_Rle ; _R0 ;
-               Cic.Appl
-                [_Rmult ; int_to_real n ; Cic.Appl [_Rinv ; int_to_real d]]
-              ]
-            )
-        )
-      ~continuation:
-        (Tacticals.then_ ~start:(PrimitiveTactics.apply_tac ~term:_Rlt_not_le)
-         ~continuation:(tac_zero_inf_pos (-n,d))) ~status in
- debug("end tac_zero_infeq_false\n");
- r
-(*PORTING
- Tacticals.id_tac ~status
-*)
+            [_Rle ; _R0 ;
+              Cic.Appl
+               [_Rmult ; int_to_real n ; Cic.Appl [_Rinv ; int_to_real d]]])))
+    ~continuation:
+      (Tacticals.then_ 
+        ~start:(PrimitiveTactics.apply_tac ~term:_Rlt_not_le)
+        ~continuation:(tac_zero_inf_pos (-n,d))))
+   status 
+ in
+  mk_tactic (tac_zero_infeq_false gl (n,d))
 ;;
 
 
 (* *********** ********** ******** ??????????????? *********** **************)
 
-let apply_type_tac ~cast:t ~applist:al ~status:(proof,goal) = 
+let apply_type_tac ~cast:t ~applist:al = 
+ let apply_type_tac ~cast:t ~applist:al (proof,goal) = 
   let curi,metasenv,pbo,pty = proof in
   let metano,context,ty = CicUtil.lookup_meta goal metasenv in
   let fresh_meta = ProofEngineHelpers.new_meta_of_proof proof in
@@ -743,90 +723,87 @@ let apply_type_tac ~cast:t ~applist:al ~status:(proof,goal) =
   let metasenv' = (fresh_meta,context,t)::metasenv in
    let proof' = curi,metasenv',pbo,pty in
     let proof'',goals =
-     PrimitiveTactics.apply_tac 
-      (*~term:(Cic.Appl ((Cic.Cast (Cic.Meta (fresh_meta,irl),t))::al)) (* ??? *)*)
-      ~term:(Cic.Appl ((Cic.Meta (fresh_meta,irl))::al)) (* ??? *)
-       ~status:(proof',goal)
+     apply_tactic 
+      (PrimitiveTactics.apply_tac 
+       (*~term:(Cic.Appl ((Cic.Cast (Cic.Meta (fresh_meta,irl),t))::al)) *)
+       ~term:(Cic.Appl ((Cic.Meta (fresh_meta,irl))::al))) (* ??? *)
+      (proof',goal)
     in
      proof'',fresh_meta::goals
+ in
+  mk_tactic (apply_type_tac ~cast:t ~applist:al)
 ;;
 
-
-
-
-   
-let my_cut ~term:c ~status:(proof,goal)=
+let my_cut ~term:c =
+ let my_cut ~term:c (proof,goal) =
   let curi,metasenv,pbo,pty = proof in
   let metano,context,ty = CicUtil.lookup_meta goal metasenv in
-
-debug("my_cut di "^CicPp.ppterm c^"\n");
-
-
   let fresh_meta = ProofEngineHelpers.new_meta_of_proof proof in
   let irl =
    CicMkImplicit.identity_relocation_list_for_metavariable context in
   let metasenv' = (fresh_meta,context,c)::metasenv in
    let proof' = curi,metasenv',pbo,pty in
     let proof'',goals =
-     apply_type_tac ~cast:(Cic.Prod(Cic.Name "Anonymous",c,
-      CicSubstitution.lift 1 ty)) ~applist:[Cic.Meta(fresh_meta,irl)] 
-       ~status:(proof',goal)
+     apply_tactic 
+      (apply_type_tac 
+       ~cast:(Cic.Prod(Cic.Name "Anonymous",c,CicSubstitution.lift 1 ty)) 
+       ~applist:[Cic.Meta(fresh_meta,irl)])
+      (proof',goal)
     in
      (* We permute the generated goals to be consistent with Coq *)
      match goals with
         [] -> assert false
       | he::tl -> proof'',he::fresh_meta::tl
+ in
+  mk_tactic (my_cut ~term:c)
 ;;
 
-
 let exact = PrimitiveTactics.exact_tac;;
 
-let tac_use h ~status:(proof,goal as status) = 
-debug("Inizio TC_USE\n");
-let curi,metasenv,pbo,pty = proof in
-let metano,context,ty = CicUtil.lookup_meta goal metasenv in
-debug ("hname = "^ CicPp.ppterm h.hname ^"\n"); 
-debug ("ty = "^ CicPp.ppterm ty^"\n"); 
-
-let res = 
-match h.htype with
-  "Rlt" -> exact ~term:h.hname ~status
-  |"Rle" -> exact ~term:h.hname ~status
-  |"Rgt" -> (Tacticals.then_ ~start:(PrimitiveTactics.apply_tac 
-             ~term:_Rfourier_gt_to_lt) 
-             ~continuation:(exact ~term:h.hname)) ~status
-  |"Rge" -> (Tacticals.then_ ~start:(PrimitiveTactics.apply_tac 
-             ~term:_Rfourier_ge_to_le)
-              ~continuation:(exact ~term:h.hname)) ~status
-  |"eqTLR" -> (Tacticals.then_ ~start:(PrimitiveTactics.apply_tac 
-               ~term:_Rfourier_eqLR_to_le)
-                ~continuation:(exact ~term:h.hname)) ~status
-  |"eqTRL" -> (Tacticals.then_ ~start:(PrimitiveTactics.apply_tac 
-               ~term:_Rfourier_eqRL_to_le)
-                ~continuation:(exact ~term:h.hname)) ~status
-  |_->assert false
-in
-debug("Fine TAC_USE\n");
-res
+let tac_use h = 
+ let tac_use h status = 
+  let (proof, goal) = status in
+  debug("Inizio TC_USE\n");
+  let curi,metasenv,pbo,pty = proof in
+  let metano,context,ty = CicUtil.lookup_meta goal metasenv in
+  debug ("hname = "^ CicPp.ppterm h.hname ^"\n"); 
+  debug ("ty = "^ CicPp.ppterm ty^"\n");
+  apply_tactic 
+   (match h.htype with
+      "Rlt" -> exact ~term:h.hname 
+    | "Rle" -> exact ~term:h.hname 
+    | "Rgt" -> (Tacticals.then_ 
+                 ~start:(PrimitiveTactics.apply_tac ~term:_Rfourier_gt_to_lt) 
+                 ~continuation:(exact ~term:h.hname)) 
+    | "Rge" -> (Tacticals.then_ 
+                 ~start:(PrimitiveTactics.apply_tac ~term:_Rfourier_ge_to_le)
+                 ~continuation:(exact ~term:h.hname)) 
+    | "eqTLR" -> (Tacticals.then_ 
+                   ~start:(PrimitiveTactics.apply_tac ~term:_Rfourier_eqLR_to_le)
+                   ~continuation:(exact ~term:h.hname)) 
+    | "eqTRL" -> (Tacticals.then_ 
+                   ~start:(PrimitiveTactics.apply_tac ~term:_Rfourier_eqRL_to_le)
+                   ~continuation:(exact ~term:h.hname)) 
+    | _->assert false)
+   status
+ in
+  mk_tactic (tac_use h)
 ;;
 
-
-
 let is_ineq (h,t) =
     match t with
        Cic.Appl ( Cic.Const(u,boh)::next) ->
-         (match (UriManager.string_of_uri u) with
-                "cic:/Coq/Reals/Rdefinitions/Rlt.con" -> true
-               |"cic:/Coq/Reals/Rdefinitions/Rgt.con" -> true
-               |"cic:/Coq/Reals/Rdefinitions/Rle.con" -> true
-               |"cic:/Coq/Reals/Rdefinitions/Rge.con" -> true
-               |"cic:/Coq/Init/Logic_Type/eqT.con" ->
+         (if UriManager.eq u HelmLibraryObjects.Reals.rlt_URI or
+             UriManager.eq u HelmLibraryObjects.Reals.rgt_URI or
+             UriManager.eq u HelmLibraryObjects.Reals.rle_URI or
+             UriManager.eq u HelmLibraryObjects.Reals.rge_URI then true
+          else if UriManager.eq u HelmLibraryObjects.Logic.eq_URI then
                    (match (List.hd next) with
                        Cic.Const (uri,_) when
-                        UriManager.string_of_uri uri =
-                        "cic:/Coq/Reals/Rdefinitions/R.con" -> true
+                        UriManager.eq uri HelmLibraryObjects.Reals.r_URI
+                         -> true
                      | _ -> false)
-                |_->false)
+           else false)
      |_->false
 ;;
 
@@ -844,12 +821,12 @@ let rec strip_outer_cast c = match c with
 
 (*let find_in_context id context =
   let rec find_in_context_aux c n =
-       match c with
-       [] -> failwith (id^" not found in context")      
-       | a::next -> (match a with 
-                       Some (Cic.Name(name),_) when name = id -> n 
-                             (*? magari al posto di _ qualcosaltro?*)
-                       | _ -> find_in_context_aux next (n+1))
+          match c with
+        [] -> failwith (id^" not found in context")      
+        | a::next -> (match a with 
+                        Some (Cic.Name(name),_) when name = id -> n 
+                              (*? magari al posto di _ qualcosaltro?*)
+                        | _ -> find_in_context_aux next (n+1))
   in 
   find_in_context_aux context 1 
 ;;
@@ -859,134 +836,140 @@ let rec filter_real_hyp context cont =
   match context with
   [] -> []
   | Some(Cic.Name(h),Cic.Decl(t))::next -> (
-                               let n = find_in_context h cont in
-                               debug("assegno "^string_of_int n^" a "^CicPp.ppterm t^"\n");
-                       [(Cic.Rel(n),t)] @ filter_real_hyp next cont)
+                                  let n = find_in_context h cont in
+                                debug("assegno "^string_of_int n^" a "^CicPp.ppterm t^"\n");
+                          [(Cic.Rel(n),t)] @ filter_real_hyp next cont)
   | a::next -> debug("  no\n"); filter_real_hyp next cont
 ;;*)
+
 let filter_real_hyp context _ =
   let rec filter_aux context num =
    match context with
-  [] -> []
-  | Some(Cic.Name(h),Cic.Decl(t))::next -> 
-               (
-               (*let n = find_in_context h cont in*)
-               debug("assegno "^string_of_int num^" a "^h^":"^CicPp.ppterm t^"\n");
-               [(Cic.Rel(num),t)] @ filter_aux next (num+1)
-               )
-  | a::next -> filter_aux next (num+1)
+     [] -> []
+   | Some(Cic.Name(h),Cic.Decl(t))::next -> 
+       [(Cic.Rel(num),t)] @ filter_aux next (num+1)
+   | a::next -> filter_aux next (num+1)
   in
-  filter_aux context 1
+   filter_aux context 1
 ;;
 
 
-(* lifts everithing at the conclusion level *) 
+(* lifts everithing at the conclusion level *)        
 let rec superlift c n=
   match c with
-  [] -> []
-  | Some(name,Cic.Decl(a))::next  -> [Some(name,Cic.Decl(
-                  CicSubstitution.lift n a))] @ superlift next (n+1)
-  | Some(name,Cic.Def(a,None))::next   -> [Some(name,Cic.Def((
-                  CicSubstitution.lift n a),None))] @ superlift next (n+1)
-  | Some(name,Cic.Def(a,Some ty))::next   -> [Some(name,Cic.Def((
-                  CicSubstitution.lift n a),Some (CicSubstitution.lift n ty)))] @ superlift next (n+1)
+    [] -> []
+  | Some(name,Cic.Decl(a))::next  -> 
+     [Some(name,Cic.Decl(CicSubstitution.lift n a))]@ superlift next (n+1)
+  | Some(name,Cic.Def(a,None))::next -> 
+     [Some(name,Cic.Def((CicSubstitution.lift n a),None))]@ superlift next (n+1)
+  | Some(name,Cic.Def(a,Some ty))::next   -> 
+     [Some(name,
+      Cic.Def((CicSubstitution.lift n a),Some (CicSubstitution.lift n ty)))
+      ] @ superlift next (n+1)
   | _::next -> superlift next (n+1) (*??  ??*)
  
 ;;
 
-let equality_replace a b ~status =
-debug("inizio EQ\n");
- let module C = Cic in
-  let proof,goal = status in
-  let curi,metasenv,pbo,pty = proof in
-  let metano,context,ty = CicUtil.lookup_meta goal metasenv in
-   let a_eq_b = C.Appl [ _eqT ; _R ; a ; b ] in
-   let fresh_meta = ProofEngineHelpers.new_meta_of_proof proof in
-   let irl =
-    CicMkImplicit.identity_relocation_list_for_metavariable context in
-   let metasenv' = (fresh_meta,context,a_eq_b)::metasenv in
-debug("chamo rewrite tac su"^CicPp.ppterm (C.Meta (fresh_meta,irl)));
-   let (proof,goals) =
-    EqualityTactics.rewrite_simpl_tac ~term:(C.Meta (fresh_meta,irl))
-     ~status:((curi,metasenv',pbo,pty),goal)
-   in
-   let new_goals = fresh_meta::goals in
-debug("fine EQ -> goals : "^string_of_int( List.length new_goals)  ^" = "
-  ^string_of_int( List.length goals)^"+ meta\n");
-    (proof,new_goals)
+let equality_replace a b =
+ let equality_replace a b status =
+ debug("inizio EQ\n");
+  let module C = Cic in
+   let proof,goal = status in
+   let curi,metasenv,pbo,pty = proof in
+   let metano,context,ty = CicUtil.lookup_meta goal metasenv in
+    let a_eq_b = C.Appl [ _eqT ; _R ; a ; b ] in
+    let fresh_meta = ProofEngineHelpers.new_meta_of_proof proof in
+    let irl =
+     CicMkImplicit.identity_relocation_list_for_metavariable context in
+    let metasenv' = (fresh_meta,context,a_eq_b)::metasenv in
+ debug("chamo rewrite tac su"^CicPp.ppterm (C.Meta (fresh_meta,irl)));
+    let (proof,goals) = apply_tactic 
+     (EqualityTactics.rewrite_simpl_tac
+       ~direction:`LeftToRight
+       ~pattern:(ProofEngineTypes.conclusion_pattern None)
+       (C.Meta (fresh_meta,irl)))
+     ((curi,metasenv',pbo,pty),goal)
+    in
+    let new_goals = fresh_meta::goals in
+ debug("fine EQ -> goals : "^string_of_int( List.length new_goals)  ^" = "
+   ^string_of_int( List.length goals)^"+ meta\n");
+     (proof,new_goals)
+ in 
+  mk_tactic (equality_replace a b)
 ;;
 
-let tcl_fail a ~status:(proof,goal) =
-       match a with
-       1 -> raise (ProofEngineTypes.Fail "fail-tactical")
-       |_-> (proof,[goal])
+let tcl_fail a (proof,goal) =
+  match a with
+    1 -> raise (ProofEngineTypes.Fail (lazy "fail-tactical"))
+  | _ -> (proof,[goal])
 ;;
 
 (* Galla: moved in variousTactics.ml 
-let assumption_tac ~status:(proof,goal)=
+let assumption_tac (proof,goal)=
   let curi,metasenv,pbo,pty = proof in
   let metano,context,ty = CicUtil.lookup_meta goal metasenv in
   let num = ref 0 in
   let tac_list = List.map 
-       ( fun x -> num := !num + 1;
-               match x with
-                 Some(Cic.Name(nm),t) -> (nm,exact ~term:(Cic.Rel(!num)))
-                 | _ -> ("fake",tcl_fail 1)
-       )  
-       context 
+          ( fun x -> num := !num + 1;
+                match x with
+                  Some(Cic.Name(nm),t) -> (nm,exact ~term:(Cic.Rel(!num)))
+                  | _ -> ("fake",tcl_fail 1)
+        )  
+          context 
   in
-  Tacticals.try_tactics ~tactics:tac_list ~status:(proof,goal)
+  Tacticals.first ~tactics:tac_list (proof,goal)
 ;;
 *)
 (* Galla: moved in negationTactics.ml
 (* !!!!! fix !!!!!!!!!! *)
-let contradiction_tac ~status:(proof,goal)=
-       Tacticals.then_ 
+let contradiction_tac (proof,goal)=
+        Tacticals.then_ 
                 (*inutile sia questo che quello prima  della chiamata*)
-               ~start:PrimitiveTactics.intros_tac
-               ~continuation:(Tacticals.then_ 
-                       ~start:(VariousTactics.elim_type_tac ~term:_False) 
-                       ~continuation:(assumption_tac))
-       ~status:(proof,goal) 
+                ~start:PrimitiveTactics.intros_tac
+                ~continuation:(Tacticals.then_ 
+                        ~start:(VariousTactics.elim_type_tac ~term:_False) 
+                        ~continuation:(assumption_tac))
+        (proof,goal) 
 ;;
 *)
 
 (* ********************* TATTICA ******************************** *)
 
-let rec fourier ~status:(s_proof,s_goal)=
+let rec fourier (s_proof,s_goal)=
   let s_curi,s_metasenv,s_pbo,s_pty = s_proof in
   let s_metano,s_context,s_ty = CicUtil.lookup_meta s_goal s_metasenv in
-  debug ("invoco fourier_tac sul goal "^string_of_int(s_goal)^" e contesto :\n");
+  debug ("invoco fourier_tac sul goal "^string_of_int(s_goal)^" e contesto:\n");
   debug_pcontext s_context;
 
   let fhyp = String.copy "new_hyp_for_fourier" in 
    
-(* here we need to negate the thesis, but to do this we need to apply the right
-theoreme,so let's parse our thesis *)
+(* here we need to negate the thesis, but to do this we need to apply the 
+   right theoreme,so let's parse our thesis *)
   
   let th_to_appl = ref _Rfourier_not_le_gt in   
   (match s_ty with
    Cic.Appl ( Cic.Const(u,boh)::args) ->
-    (match UriManager.string_of_uri u with
-       "cic:/Coq/Reals/Rdefinitions/Rlt.con" -> th_to_appl := 
-               _Rfourier_not_ge_lt
-       |"cic:/Coq/Reals/Rdefinitions/Rle.con" -> th_to_appl := 
+    th_to_appl :=
+    (if UriManager.eq u HelmLibraryObjects.Reals.rlt_URI then
+      _Rfourier_not_ge_lt
+     else if UriManager.eq u HelmLibraryObjects.Reals.rle_URI then
                _Rfourier_not_gt_le
-       |"cic:/Coq/Reals/Rdefinitions/Rgt.con" -> th_to_appl := 
+     else if UriManager.eq u HelmLibraryObjects.Reals.rgt_URI then
                _Rfourier_not_le_gt
-       |"cic:/Coq/Reals/Rdefinitions/Rge.con" -> th_to_appl := 
+     else if UriManager.eq u HelmLibraryObjects.Reals.rge_URI then
                _Rfourier_not_lt_ge
-       |_-> failwith "fourier can't be applyed")
+     else failwith "fourier can't be applyed")
    |_-> failwith "fourier can't be applyed"); 
    (* fix maybe strip_outer_cast goes here?? *)
 
    (* now let's change our thesis applying the th and put it with hp *) 
 
-   let proof,gl =
-    Tacticals.then_ 
-     ~start:(PrimitiveTactics.apply_tac ~term:!th_to_appl)
-     ~continuation:(PrimitiveTactics.intros_tac ())
-     ~status:(s_proof,s_goal) in
+   let proof,gl = apply_tactic 
+    (Tacticals.then_ 
+      ~start:(PrimitiveTactics.apply_tac ~term:!th_to_appl)
+      ~continuation:(PrimitiveTactics.intros_tac ()))
+    (s_proof,s_goal) 
+   in
    let goal = if List.length gl = 1 then List.hd gl 
                                     else failwith "a new goal" in
 
@@ -998,7 +981,6 @@ theoreme,so let's parse our thesis *)
    let curi,metasenv,pbo,pty = proof in
    let metano,context,ty = CicUtil.lookup_meta goal metasenv in
 
-
    (* now we want to convert hp to inequations, but first we must lift
       everyting to thesis level, so that a variable has the save Rel(n) 
       in each hp ( needed by ineq1_of_term ) *)
@@ -1016,18 +998,17 @@ theoreme,so let's parse our thesis *)
   (* transform hyps into inequations *)
   
   List.iter (fun h -> try (lineq:=(ineq1_of_term h)@(!lineq))
-                       with _-> ())
+                        with _-> ())
               hyps;
-
-           
+            
   debug ("applico fourier a "^ string_of_int (List.length !lineq)^
          " disequazioni\n");
 
   let res=fourier_lineq (!lineq) in
   let tac=ref Tacticals.id_tac in
   if res=[] then 
-       (print_string "Tactic Fourier fails.\n";flush stdout;
-        failwith "fourier_tac fails")
+          (print_string "Tactic Fourier fails.\n";flush stdout;
+         failwith "fourier_tac fails")
   else 
   (
   match res with (*match res*)
@@ -1042,33 +1023,33 @@ theoreme,so let's parse our thesis *)
      let lutil=ref [] in
      List.iter 
         (fun (h,c) -> if c<>r0 then (lutil:=(h,c)::(!lutil);
-          (* DBG *)Fourier.print_rational(c);print_string " "(* DBG *))
-                                    )
+           (* DBG *)Fourier.print_rational(c);print_string " "(* DBG *))
+                                     )
         (List.combine (!lineq) lc); 
-       
+        
      print_string (" quindi lutil e' lunga "^
-      string_of_int (List.length (!lutil))^"\n");                 
+      string_of_int (List.length (!lutil))^"\n");                   
        
      (* on construit la combinaison linĂ©aire des inĂ©quation *)
      
      (match (!lutil) with (*match (!lutil) *)
        (h1,c1)::lutil ->
        debug ("elem di lutil ");Fourier.print_rational c1;print_string "\n"; 
-         
+          
        let s=ref (h1.hstrict) in
-         
+          
           
        let t1 = ref (Cic.Appl [_Rmult;rational_to_real c1;h1.hleft] ) in
        let t2 = ref (Cic.Appl [_Rmult;rational_to_real c1;h1.hright]) in
 
        List.iter (fun (h,c) ->
-              s:=(!s)||(h.hstrict);
-              t1:=(Cic.Appl [_Rplus;!t1;Cic.Appl 
-                    [_Rmult;rational_to_real c;h.hleft ]  ]);
-              t2:=(Cic.Appl [_Rplus;!t2;Cic.Appl 
-                    [_Rmult;rational_to_real c;h.hright]  ]))
+               s:=(!s)||(h.hstrict);
+               t1:=(Cic.Appl [_Rplus;!t1;Cic.Appl 
+                     [_Rmult;rational_to_real c;h.hleft ]  ]);
+               t2:=(Cic.Appl [_Rplus;!t2;Cic.Appl 
+                     [_Rmult;rational_to_real c;h.hright]  ]))
                lutil;
-              
+               
        let ineq=Cic.Appl [(if (!s) then _Rlt else _Rle);!t1;!t2 ] in
        let tc=rational_to_real cres in
 
@@ -1077,153 +1058,148 @@ theoreme,so let's parse our thesis *)
        
        debug "inizio a costruire tac1\n";
        Fourier.print_rational(c1);
-         
-       let tac1=ref ( fun ~status -> 
-        if h1.hstrict then 
-          (Tacticals.thens 
-            ~start:(
-             fun ~status -> 
-             debug ("inizio t1 strict\n");
-             let curi,metasenv,pbo,pty = proof in
-             let metano,context,ty = CicUtil.lookup_meta goal metasenv in
-             debug ("th = "^ CicPp.ppterm _Rfourier_lt ^"\n"); 
-             debug ("ty = "^ CicPp.ppterm ty^"\n"); 
-              PrimitiveTactics.apply_tac ~term:_Rfourier_lt ~status)
-            ~continuations:[tac_use h1;tac_zero_inf_pos  
-             (rational_to_fraction c1)] 
-           ~status
-          )
-           else 
-          (Tacticals.thens 
-            ~start:(PrimitiveTactics.apply_tac ~term:_Rfourier_le)
+          
+       let tac1=ref ( mk_tactic (fun status -> 
+         apply_tactic
+          (if h1.hstrict then 
+           (Tacticals.thens 
+             ~start:(mk_tactic (fun status -> 
+              debug ("inizio t1 strict\n");
+              let curi,metasenv,pbo,pty = proof in
+              let metano,context,ty = CicUtil.lookup_meta goal metasenv in
+              debug ("th = "^ CicPp.ppterm _Rfourier_lt ^"\n"); 
+              debug ("ty = "^ CicPp.ppterm ty^"\n"); 
+              apply_tactic 
+               (PrimitiveTactics.apply_tac ~term:_Rfourier_lt) status))
+            ~continuations:[tac_use h1;
+              tac_zero_inf_pos (rational_to_fraction c1)])
+          else 
+           (Tacticals.thens 
+             ~start:(PrimitiveTactics.apply_tac ~term:_Rfourier_le)
              ~continuations:[tac_use h1;tac_zero_inf_pos
-             (rational_to_fraction c1)] ~status
-          )
-        )
-                   
+              (rational_to_fraction c1)]))
+          status))
+                   
        in
        s:=h1.hstrict;
        List.iter (fun (h,c) -> 
          (if (!s) then 
-          (if h.hstrict then 
-            (debug("tac1 1\n");
-            tac1:=(Tacticals.thens 
-              ~start:(PrimitiveTactics.apply_tac 
-               ~term:_Rfourier_lt_lt)
-              ~continuations:[!tac1;tac_use h;tac_zero_inf_pos
-               (rational_to_fraction c)])
-            )
-          else 
-            (debug("tac1 2\n");
-            Fourier.print_rational(c1);
-            tac1:=(Tacticals.thens 
-             ~start:(
-               fun ~status -> 
-               debug("INIZIO TAC 1 2\n");
-               let curi,metasenv,pbo,pty = proof in
-               let metano,context,ty = CicUtil.lookup_meta goal metasenv in
-               debug ("th = "^ CicPp.ppterm _Rfourier_lt_le ^"\n"); 
-               debug ("ty = "^ CicPp.ppterm ty^"\n"); 
-                PrimitiveTactics.apply_tac ~term:_Rfourier_lt_le ~status)
-             ~continuations:[!tac1;tac_use h;tac_zero_inf_pos 
-               (rational_to_fraction c)])
-             )
-           )
-        else 
            (if h.hstrict then 
-            (debug("tac1 3\n");
-            tac1:=(Tacticals.thens 
-              ~start:(PrimitiveTactics.apply_tac ~term:_Rfourier_le_lt)
-              ~continuations:[!tac1;tac_use h;tac_zero_inf_pos  
-                (rational_to_fraction c)])
-            )
-          else 
-            (debug("tac1 4\n");
-            tac1:=(Tacticals.thens 
-              ~start:(PrimitiveTactics.apply_tac ~term:_Rfourier_le_le)
-              ~continuations:[!tac1;tac_use h;tac_zero_inf_pos  
-                (rational_to_fraction c)])
-            )
-           )
-        );
-        s:=(!s)||(h.hstrict)) lutil;(*end List.iter*)
-                     
+             (debug("tac1 1\n");
+             tac1:=(Tacticals.thens 
+               ~start:(PrimitiveTactics.apply_tac ~term:_Rfourier_lt_lt)
+               ~continuations:[!tac1;tac_use h;tac_zero_inf_pos
+                (rational_to_fraction c)]))
+            else 
+             (debug("tac1 2\n");
+             Fourier.print_rational(c1);
+             tac1:=(Tacticals.thens 
+              ~start:(mk_tactic (fun status -> 
+                debug("INIZIO TAC 1 2\n");
+                let curi,metasenv,pbo,pty = proof in
+                let metano,context,ty = CicUtil.lookup_meta goal metasenv in
+                debug ("th = "^ CicPp.ppterm _Rfourier_lt_le ^"\n"); 
+                debug ("ty = "^ CicPp.ppterm ty^"\n"); 
+                apply_tactic 
+                 (PrimitiveTactics.apply_tac ~term:_Rfourier_lt_le) 
+                 status))
+              ~continuations:[!tac1;tac_use h;tac_zero_inf_pos 
+                (rational_to_fraction c)])))
+          else 
+           (if h.hstrict then 
+             (debug("tac1 3\n");
+             tac1:=(Tacticals.thens 
+               ~start:(PrimitiveTactics.apply_tac ~term:_Rfourier_le_lt)
+               ~continuations:[!tac1;tac_use h;tac_zero_inf_pos  
+                (rational_to_fraction c)]))
+            else 
+             (debug("tac1 4\n");
+             tac1:=(Tacticals.thens 
+               ~start:(PrimitiveTactics.apply_tac ~term:_Rfourier_le_le)
+               ~continuations:[!tac1;tac_use h;tac_zero_inf_pos  
+                (rational_to_fraction c)]))));
+         s:=(!s)||(h.hstrict)) (* end fun -> *)
+         lutil;(*end List.iter*)
+                     
        let tac2 = 
          if sres then 
-          tac_zero_inf_false goal (rational_to_fraction cres)
+           tac_zero_inf_false goal (rational_to_fraction cres)
          else 
-          tac_zero_infeq_false goal (rational_to_fraction cres)
+           tac_zero_infeq_false goal (rational_to_fraction cres)
        in
        tac:=(Tacticals.thens 
          ~start:(my_cut ~term:ineq) 
-         ~continuations:[(*Tacticals.id_tac;Tacticals.id_tac*)(**)Tacticals.then_  
-          ~start:(fun ~status:(proof,goal as status) ->
+         ~continuations:[Tacticals.then_  
+           ~start:( mk_tactic (fun status ->
+             let (proof, goal) = status in
              let curi,metasenv,pbo,pty = proof in
              let metano,context,ty = CicUtil.lookup_meta goal metasenv in
-             PrimitiveTactics.change_tac ~what:ty 
-             ~with_what:(Cic.Appl [ _not; ineq]) ~status)
-          ~continuation:(Tacticals.then_ 
+             apply_tactic 
+              (ReductionTactics.change_tac
+                ~pattern:(ProofEngineTypes.conclusion_pattern (Some ty))
+                (const_lazy_term (Cic.Appl [ _not; ineq])))
+              status))
+           ~continuation:(Tacticals.then_ 
              ~start:(PrimitiveTactics.apply_tac ~term:
-              (if sres then _Rnot_lt_lt else _Rnot_le_le))
-            ~continuation:(Tacticals.thens 
-              ~start:( 
-                fun ~status ->
-                debug("t1 ="^CicPp.ppterm !t1 ^"t2 ="^CicPp.ppterm !t2 ^"tc="^ CicPp.ppterm tc^"\n");
-                let r = equality_replace (Cic.Appl [_Rminus;!t2;!t1] ) tc 
-                 ~status
-                in
-                (match r with (p,gl) -> 
-                  debug("eq1 ritorna "^string_of_int(List.length gl)^"\n" ));
-                 r)
-              ~continuations:[(Tacticals.thens 
-                ~start:(
-                  fun ~status ->
-                  let r = equality_replace (Cic.Appl[_Rinv;_R1]) _R1 ~status in
-                  (match r with (p,gl) ->
-                    debug("eq2 ritorna "^string_of_int(List.length gl)^"\n" ));
-                  r)
-                ~continuations:
-                   [PrimitiveTactics.apply_tac ~term:_Rinv_R1
-                ;Tacticals.try_tactics 
-                  ~tactics:[ "ring", (fun ~status -> 
-                                       debug("begin RING\n");
-                                       let r = Ring.ring_tac  ~status in
-                                       debug ("end RING\n");
-                                       r)
-                       ; "id", Tacticals.id_tac] 
-                ])
-              ;(*Tacticals.id_tac*)
-               Tacticals.then_ 
-                ~start:
-                 (
-                 fun ~status:(proof,goal as status) ->
-                  let curi,metasenv,pbo,pty = proof in
-                  let metano,context,ty = CicUtil.lookup_meta goal metasenv in
-                  (* check if ty is of type *)
-                  let w1 = 
-                    debug("qui c'e' gia' l'or "^CicPp.ppterm ty^"\n");
-                    (match ty with
-                    Cic.Prod (Cic.Anonymous,a,b) -> (Cic.Appl [_not;a])
-                    |_ -> assert false)
+               (if sres then _Rnot_lt_lt else _Rnot_le_le))
+             ~continuation:(Tacticals.thens 
+               ~start:(mk_tactic (fun status ->
+                 debug("t1 ="^CicPp.ppterm !t1 ^"t2 ="^
+                  CicPp.ppterm !t2 ^"tc="^ CicPp.ppterm tc^"\n");
+                 let r = apply_tactic 
+                 (equality_replace (Cic.Appl [_Rminus;!t2;!t1] ) tc) 
+                  status
+                 in
+                 (match r with (p,gl) -> 
+                   debug("eq1 ritorna "^string_of_int(List.length gl)^"\n" ));
+                 r))
+               ~continuations:[(Tacticals.thens 
+                 ~start:(mk_tactic (fun status ->
+                   let r = apply_tactic 
+                   (equality_replace (Cic.Appl[_Rinv;_R1]) _R1) 
+                   status 
                   in
-                  let r = PrimitiveTactics.change_tac ~what:ty ~with_what:w1 ~status in
-                  debug("fine MY_CHNGE\n");
-                  r
-                  
-                 ) 
-                ~continuation:(*PORTINGTacticals.id_tac*)tac2]))
-        ;(*Tacticals.id_tac*)!tac1]);(*end tac:=*)
+                   (match r with (p,gl) ->
+                     debug("eq2 ritorna "^string_of_int(List.length gl)^"\n" ));
+                   r))
+                 ~continuations:
+                   [PrimitiveTactics.apply_tac ~term:_Rinv_R1;
+                   Tacticals.first 
+                     ~tactics:[ "ring",Ring.ring_tac; "id", Tacticals.id_tac] 
+                   ])
+               ;(*Tacticals.id_tac*)
+                Tacticals.then_ 
+                 ~start:(mk_tactic (fun status ->
+                   let (proof, goal) = status in
+                   let curi,metasenv,pbo,pty = proof in
+                   let metano,context,ty = CicUtil.lookup_meta goal metasenv in
+                   (* check if ty is of type *)
+                   let w1 = 
+                     debug("qui c'e' gia' l'or "^CicPp.ppterm ty^"\n");
+                     (match ty with
+                     Cic.Prod (Cic.Anonymous,a,b) -> (Cic.Appl [_not;a])
+                     |_ -> assert false)
+                   in
+                   let r = apply_tactic 
+                   (ReductionTactics.change_tac
+                      ~pattern:(ProofEngineTypes.conclusion_pattern (Some ty))
+                      (const_lazy_term w1)) status
+                   in
+                   debug("fine MY_CHNGE\n");
+                   r)) 
+                 ~continuation:(*PORTINGTacticals.id_tac*)tac2]))
+         ;(*Tacticals.id_tac*)!tac1]);(*end tac:=*)
 
     |_-> assert false)(*match (!lutil) *)
   |_-> assert false); (*match res*)
   debug ("finalmente applico tac\n");
   (
-  let r = !tac ~status:(proof,goal) in
+  let r = apply_tactic !tac (proof,goal) in
   debug("\n\n]]]]]]]]]]]]]]]]]) That's all folks ([[[[[[[[[[[[[[[[[[[\n\n");r
   
   ) 
 ;;
 
-let fourier_tac ~status:(proof,goal) = fourier ~status:(proof,goal);;
+let fourier_tac = mk_tactic fourier