]> matita.cs.unibo.it Git - helm.git/blobdiff - matita/library/nat/primes.ma
branch for universe
[helm.git] / matita / library / nat / primes.ma
diff --git a/matita/library/nat/primes.ma b/matita/library/nat/primes.ma
new file mode 100644 (file)
index 0000000..dcf7abe
--- /dev/null
@@ -0,0 +1,782 @@
+(**************************************************************************)
+(*       ___                                                               *)
+(*      ||M||                                                             *)
+(*      ||A||       A project by Andrea Asperti                           *)
+(*      ||T||                                                             *)
+(*      ||I||       Developers:                                           *)
+(*      ||T||       A.Asperti, C.Sacerdoti Coen,                          *)
+(*      ||A||       E.Tassi, S.Zacchiroli                                 *)
+(*      \   /                                                             *)
+(*       \ /        Matita is distributed under the terms of the          *)
+(*        v         GNU Lesser General Public License Version 2.1         *)
+(*                                                                        *)
+(**************************************************************************)
+
+include "nat/div_and_mod.ma".
+include "nat/minimization.ma".
+include "nat/sigma_and_pi.ma".
+include "nat/factorial.ma".
+
+inductive divides (n,m:nat) : Prop \def
+witness : \forall p:nat.m = times n p \to divides n m.
+
+interpretation "divides" 'divides n m = (cic:/matita/nat/primes/divides.ind#xpointer(1/1) n m).
+interpretation "not divides" 'ndivides n m =
+ (cic:/matita/logic/connectives/Not.con (cic:/matita/nat/primes/divides.ind#xpointer(1/1) n m)).
+
+theorem reflexive_divides : reflexive nat divides.
+unfold reflexive.
+intros.
+exact (witness x x (S O) (times_n_SO x)).
+qed.
+
+theorem divides_to_div_mod_spec :
+\forall n,m. O < n \to n \divides m \to div_mod_spec m n (m / n) O.
+intros.elim H1.rewrite > H2.
+constructor 1.assumption.
+apply (lt_O_n_elim n H).intros.
+rewrite < plus_n_O.
+rewrite > div_times.apply sym_times.
+qed.
+
+theorem div_mod_spec_to_divides :
+\forall n,m,p. div_mod_spec m n p O \to n \divides m.
+intros.elim H.
+apply (witness n m p).
+rewrite < sym_times.
+rewrite > (plus_n_O (p*n)).assumption.
+qed.
+
+theorem divides_to_mod_O:
+\forall n,m. O < n \to n \divides m \to (m \mod n) = O.
+intros.apply (div_mod_spec_to_eq2 m n (m / n) (m \mod n) (m / n) O).
+apply div_mod_spec_div_mod.assumption.
+apply divides_to_div_mod_spec.assumption.assumption.
+qed.
+
+theorem mod_O_to_divides:
+\forall n,m. O< n \to (m \mod n) = O \to  n \divides m.
+intros.
+apply (witness n m (m / n)).
+rewrite > (plus_n_O (n * (m / n))).
+rewrite < H1.
+rewrite < sym_times.
+(* Andrea: perche' hint non lo trova ?*)
+apply div_mod.
+assumption.
+qed.
+
+theorem divides_n_O: \forall n:nat. n \divides O.
+intro. apply (witness n O O).apply times_n_O.
+qed.
+
+theorem divides_n_n: \forall n:nat. n \divides n.
+intro. apply (witness n n (S O)).apply times_n_SO.
+qed.
+
+theorem divides_SO_n: \forall n:nat. (S O) \divides n.
+intro. apply (witness (S O) n n). simplify.apply plus_n_O.
+qed.
+
+theorem divides_plus: \forall n,p,q:nat. 
+n \divides p \to n \divides q \to n \divides p+q.
+intros.
+elim H.elim H1. apply (witness n (p+q) (n2+n1)).
+rewrite > H2.rewrite > H3.apply sym_eq.apply distr_times_plus.
+qed.
+
+theorem divides_minus: \forall n,p,q:nat. 
+divides n p \to divides n q \to divides n (p-q).
+intros.
+elim H.elim H1. apply (witness n (p-q) (n2-n1)).
+rewrite > H2.rewrite > H3.apply sym_eq.apply distr_times_minus.
+qed.
+
+theorem divides_times: \forall n,m,p,q:nat. 
+n \divides p \to m \divides q \to n*m \divides p*q.
+intros.
+elim H.elim H1. apply (witness (n*m) (p*q) (n2*n1)).
+rewrite > H2.rewrite > H3.
+apply (trans_eq nat ? (n*(m*(n2*n1)))).
+apply (trans_eq nat ? (n*(n2*(m*n1)))).
+apply assoc_times.
+apply eq_f.
+apply (trans_eq nat ? ((n2*m)*n1)).
+apply sym_eq. apply assoc_times.
+rewrite > (sym_times n2 m).apply assoc_times.
+apply sym_eq. apply assoc_times.
+qed.
+
+theorem transitive_divides: transitive ? divides.
+unfold.
+intros.
+elim H.elim H1. apply (witness x z (n2*n)).
+rewrite > H3.rewrite > H2.
+apply assoc_times.
+qed.
+
+variant trans_divides: \forall n,m,p. 
+ n \divides m \to m \divides p \to n \divides p \def transitive_divides.
+
+theorem eq_mod_to_divides:\forall n,m,p. O< p \to
+mod n p = mod m p \to divides p (n-m).
+intros.
+cut (n \le m \or \not n \le m).
+elim Hcut.
+cut (n-m=O).
+rewrite > Hcut1.
+apply (witness p O O).
+apply times_n_O.
+apply eq_minus_n_m_O.
+assumption.
+apply (witness p (n-m) ((div n p)-(div m p))).
+rewrite > distr_times_minus.
+rewrite > sym_times.
+rewrite > (sym_times p).
+cut ((div n p)*p = n - (mod n p)).
+rewrite > Hcut1.
+rewrite > eq_minus_minus_minus_plus.
+rewrite > sym_plus.
+rewrite > H1.
+rewrite < div_mod.reflexivity.
+assumption.
+apply sym_eq.
+apply plus_to_minus.
+rewrite > sym_plus.
+apply div_mod.
+assumption.
+apply (decidable_le n m).
+qed.
+
+theorem antisymmetric_divides: antisymmetric nat divides.
+unfold antisymmetric.intros.elim H. elim H1.
+apply (nat_case1 n2).intro.
+rewrite > H3.rewrite > H2.rewrite > H4.
+rewrite < times_n_O.reflexivity.
+intros.
+apply (nat_case1 n).intro.
+rewrite > H2.rewrite > H3.rewrite > H5.
+rewrite < times_n_O.reflexivity.
+intros.
+apply antisymmetric_le.
+rewrite > H2.rewrite > times_n_SO in \vdash (? % ?).
+apply le_times_r.rewrite > H4.apply le_S_S.apply le_O_n.
+rewrite > H3.rewrite > times_n_SO in \vdash (? % ?).
+apply le_times_r.rewrite > H5.apply le_S_S.apply le_O_n.
+qed.
+
+(* divides le *)
+theorem divides_to_le : \forall n,m. O < m \to n \divides m \to n \le m.
+intros. elim H1.rewrite > H2.cut (O < n2).
+apply (lt_O_n_elim n2 Hcut).intro.rewrite < sym_times.
+simplify.rewrite < sym_plus.
+apply le_plus_n.
+elim (le_to_or_lt_eq O n2).
+assumption.
+absurd (O<m).assumption.
+rewrite > H2.rewrite < H3.rewrite < times_n_O.
+apply (not_le_Sn_n O).
+apply le_O_n.
+qed.
+
+theorem divides_to_lt_O : \forall n,m. O < m \to n \divides m \to O < n.
+intros.elim H1.
+elim (le_to_or_lt_eq O n (le_O_n n)).
+assumption.
+rewrite < H3.absurd (O < m).assumption.
+rewrite > H2.rewrite < H3.
+simplify.exact (not_le_Sn_n O).
+qed.
+
+(*a variant of or_div_mod *)
+theorem or_div_mod1: \forall n,q. O < q \to
+(divides q (S n)) \land S n = (S (div n q)) * q \lor
+(\lnot (divides q (S n)) \land S n= (div n q) * q + S (n\mod q)).
+intros.elim (or_div_mod n q H);elim H1
+  [left.split
+    [apply (witness ? ? (S (n/q))).
+     rewrite > sym_times.assumption
+    |assumption
+    ]
+  |right.split
+    [intro.
+     apply (not_eq_O_S (n \mod q)).
+     (* come faccio a fare unfold nelleipotesi ? *)
+     cut ((S n) \mod q = O)
+      [rewrite < Hcut.
+       apply (div_mod_spec_to_eq2 (S n) q (div (S n) q) (mod (S n) q) (div n q) (S (mod n q)))
+        [apply div_mod_spec_div_mod.
+         assumption
+        |apply div_mod_spec_intro;assumption
+        ]
+      |apply divides_to_mod_O;assumption
+      ]
+    |assumption
+    ]
+  ]
+qed.
+
+theorem divides_to_div: \forall n,m.divides n m \to m/n*n = m.
+intro.
+elim (le_to_or_lt_eq O n (le_O_n n))
+  [rewrite > plus_n_O.
+   rewrite < (divides_to_mod_O ? ? H H1).
+   apply sym_eq.
+   apply div_mod.
+   assumption
+  |elim H1.
+   generalize in match H2.
+   rewrite < H.
+   simplify.
+   intro.
+   rewrite > H3.
+   reflexivity
+  ]
+qed.
+
+theorem divides_div: \forall d,n. divides d n \to divides (n/d) n.
+intros.
+apply (witness ? ? d).
+apply sym_eq.
+apply divides_to_div.
+assumption.
+qed.
+
+theorem div_div: \forall n,d:nat. O < n \to divides d n \to 
+n/(n/d) = d.
+intros.
+apply (inj_times_l1 (n/d))
+  [apply (lt_times_n_to_lt d)
+    [apply (divides_to_lt_O ? ? H H1).
+    |rewrite > divides_to_div;assumption
+    ]
+  |rewrite > divides_to_div
+    [rewrite > sym_times.
+     rewrite > divides_to_div
+      [reflexivity
+      |assumption
+      ]
+    |apply (witness ? ? d).
+     apply sym_eq.
+     apply divides_to_div.
+     assumption
+    ]
+  ]
+qed.
+
+theorem divides_to_eq_times_div_div_times: \forall a,b,c:nat.
+O \lt b \to c \divides b \to a * (b /c) = (a*b)/c.
+intros.
+elim H1.
+rewrite > H2.
+rewrite > (sym_times c n2).
+cut(O \lt c)
+[ rewrite > (lt_O_to_div_times n2 c)
+  [ rewrite < assoc_times.
+    rewrite > (lt_O_to_div_times (a *n2) c)
+    [ reflexivity
+    | assumption
+    ]
+  | assumption
+  ]  
+| apply (divides_to_lt_O c b);
+    assumption.
+]
+qed.
+
+theorem eq_div_plus: \forall n,m,d. O < d \to
+divides d n \to divides d m \to
+(n + m ) / d = n/d + m/d.
+intros.
+elim H1.
+elim H2.
+rewrite > H3.rewrite > H4.
+rewrite < distr_times_plus.
+rewrite > sym_times.
+rewrite > sym_times in ⊢ (? ? ? (? (? % ?) ?)).
+rewrite > sym_times in ⊢ (? ? ? (? ? (? % ?))).
+rewrite > lt_O_to_div_times
+  [rewrite > lt_O_to_div_times
+    [rewrite > lt_O_to_div_times
+      [reflexivity
+      |assumption
+      ]
+    |assumption
+    ]
+  |assumption
+  ]
+qed.
+
+(* boolean divides *)
+definition divides_b : nat \to nat \to bool \def
+\lambda n,m :nat. (eqb (m \mod n) O).
+
+theorem divides_b_to_Prop :
+\forall n,m:nat. O < n \to
+match divides_b n m with
+[ true \Rightarrow n \divides m
+| false \Rightarrow n \ndivides m].
+intros.unfold divides_b.
+apply eqb_elim.
+intro.simplify.apply mod_O_to_divides.assumption.assumption.
+intro.simplify.unfold Not.intro.apply H1.apply divides_to_mod_O.assumption.assumption.
+qed.
+
+theorem divides_b_true_to_divides1:
+\forall n,m:nat. O < n \to
+(divides_b n m = true ) \to n \divides m.
+intros.
+change with 
+match true with
+[ true \Rightarrow n \divides m
+| false \Rightarrow n \ndivides m].
+rewrite < H1.apply divides_b_to_Prop.
+assumption.
+qed.
+
+theorem divides_b_true_to_divides:
+\forall n,m:nat. divides_b n m = true \to n \divides m.
+intros 2.apply (nat_case n)
+  [apply (nat_case m)
+    [intro.apply divides_n_n
+    |simplify.intros.apply False_ind.
+     apply not_eq_true_false.apply sym_eq.
+     assumption
+    ]
+  |intros.
+   apply divides_b_true_to_divides1
+    [apply lt_O_S|assumption]
+  ]
+qed.
+
+theorem divides_b_false_to_not_divides1:
+\forall n,m:nat. O < n \to
+(divides_b n m = false ) \to n \ndivides m.
+intros.
+change with 
+match false with
+[ true \Rightarrow n \divides m
+| false \Rightarrow n \ndivides m].
+rewrite < H1.apply divides_b_to_Prop.
+assumption.
+qed.
+
+theorem divides_b_false_to_not_divides:
+\forall n,m:nat. divides_b n m = false \to n \ndivides m.
+intros 2.apply (nat_case n)
+  [apply (nat_case m)
+    [simplify.unfold Not.intros.
+     apply not_eq_true_false.assumption
+    |unfold Not.intros.elim H1.
+     apply (not_eq_O_S m1).apply sym_eq.
+     assumption
+    ]
+  |intros.
+   apply divides_b_false_to_not_divides1
+    [apply lt_O_S|assumption]
+  ]
+qed.
+
+theorem decidable_divides: \forall n,m:nat.O < n \to
+decidable (n \divides m).
+intros.unfold decidable.
+cut 
+(match divides_b n m with
+[ true \Rightarrow n \divides m
+| false \Rightarrow n \ndivides m] \to n \divides m \lor n \ndivides m).
+apply Hcut.apply divides_b_to_Prop.assumption.
+elim (divides_b n m).left.apply H1.right.apply H1.
+qed.
+
+theorem divides_to_divides_b_true : \forall n,m:nat. O < n \to
+n \divides m \to divides_b n m = true.
+intros.
+cut (match (divides_b n m) with
+[ true \Rightarrow n \divides m
+| false \Rightarrow n \ndivides m] \to ((divides_b n m) = true)).
+apply Hcut.apply divides_b_to_Prop.assumption.
+elim (divides_b n m).reflexivity.
+absurd (n \divides m).assumption.assumption.
+qed.
+
+theorem divides_to_divides_b_true1 : \forall n,m:nat.
+O < m \to n \divides m \to divides_b n m = true.
+intro.
+elim (le_to_or_lt_eq O n (le_O_n n))
+  [apply divides_to_divides_b_true
+    [assumption|assumption]
+  |apply False_ind.
+   rewrite < H in H2.
+   elim H2.
+   simplify in H3.
+   apply (not_le_Sn_O O).
+   rewrite > H3 in H1.
+   assumption
+  ]
+qed.
+
+theorem not_divides_to_divides_b_false: \forall n,m:nat. O < n \to
+\lnot(n \divides m) \to (divides_b n m) = false.
+intros.
+cut (match (divides_b n m) with
+[ true \Rightarrow n \divides m
+| false \Rightarrow n \ndivides m] \to ((divides_b n m) = false)).
+apply Hcut.apply divides_b_to_Prop.assumption.
+elim (divides_b n m).
+absurd (n \divides m).assumption.assumption.
+reflexivity.
+qed.
+
+theorem divides_b_div_true: 
+\forall d,n. O < n \to 
+  divides_b d n = true \to divides_b (n/d) n = true.
+intros.
+apply divides_to_divides_b_true1
+  [assumption
+  |apply divides_div.
+   apply divides_b_true_to_divides.
+   assumption
+  ]
+qed.
+
+theorem divides_b_true_to_lt_O: \forall n,m. O < n \to divides_b m n = true \to O < m.
+intros.
+elim (le_to_or_lt_eq ? ? (le_O_n m))
+  [assumption
+  |apply False_ind.
+   elim H1.
+   rewrite < H2 in H1.
+   simplify in H1.
+   apply (lt_to_not_eq O n H).
+   apply sym_eq.
+   apply eqb_true_to_eq.
+   assumption
+  ]
+qed.
+
+(* divides and pi *)
+theorem divides_f_pi_f : \forall f:nat \to nat.\forall n,m,i:nat. 
+m \le i \to i \le n+m \to f i \divides pi n f m.
+intros 5.elim n.simplify.
+cut (i = m).rewrite < Hcut.apply divides_n_n.
+apply antisymmetric_le.assumption.assumption.
+simplify.
+cut (i < S n1+m \lor i = S n1 + m).
+elim Hcut.
+apply (transitive_divides ? (pi n1 f m)).
+apply H1.apply le_S_S_to_le. assumption.
+apply (witness ? ? (f (S n1+m))).apply sym_times.
+rewrite > H3.
+apply (witness ? ? (pi n1 f m)).reflexivity.
+apply le_to_or_lt_eq.assumption.
+qed.
+
+(*
+theorem mod_S_pi: \forall f:nat \to nat.\forall n,i:nat. 
+i < n \to (S O) < (f i) \to (S (pi n f)) \mod (f i) = (S O).
+intros.cut (pi n f) \mod (f i) = O.
+rewrite < Hcut.
+apply mod_S.apply trans_lt O (S O).apply le_n (S O).assumption.
+rewrite > Hcut.assumption.
+apply divides_to_mod_O.apply trans_lt O (S O).apply le_n (S O).assumption.
+apply divides_f_pi_f.assumption.
+qed.
+*)
+
+(* divides and fact *)
+theorem divides_fact : \forall n,i:nat. 
+O < i \to i \le n \to i \divides n!.
+intros 3.elim n.absurd (O<i).assumption.apply (le_n_O_elim i H1).
+apply (not_le_Sn_O O).
+change with (i \divides (S n1)*n1!).
+apply (le_n_Sm_elim i n1 H2).
+intro.
+apply (transitive_divides ? n1!).
+apply H1.apply le_S_S_to_le. assumption.
+apply (witness ? ? (S n1)).apply sym_times.
+intro.
+rewrite > H3.
+apply (witness ? ? n1!).reflexivity.
+qed.
+
+theorem mod_S_fact: \forall n,i:nat. 
+(S O) < i \to i \le n \to (S n!) \mod i = (S O).
+intros.cut (n! \mod i = O).
+rewrite < Hcut.
+apply mod_S.apply (trans_lt O (S O)).apply (le_n (S O)).assumption.
+rewrite > Hcut.assumption.
+apply divides_to_mod_O.apply (trans_lt O (S O)).apply (le_n (S O)).assumption.
+apply divides_fact.apply (trans_lt O (S O)).apply (le_n (S O)).assumption.
+assumption.
+qed.
+
+theorem not_divides_S_fact: \forall n,i:nat. 
+(S O) < i \to i \le n \to i \ndivides S n!.
+intros.
+apply divides_b_false_to_not_divides.
+unfold divides_b.
+rewrite > mod_S_fact[simplify.reflexivity|assumption|assumption].
+qed.
+
+(* prime *)
+definition prime : nat \to  Prop \def
+\lambda n:nat. (S O) < n \land 
+(\forall m:nat. m \divides n \to (S O) < m \to  m = n).
+
+theorem not_prime_O: \lnot (prime O).
+unfold Not.unfold prime.intro.elim H.apply (not_le_Sn_O (S O) H1).
+qed.
+
+theorem not_prime_SO: \lnot (prime (S O)).
+unfold Not.unfold prime.intro.elim H.apply (not_le_Sn_n (S O) H1).
+qed.
+
+theorem prime_to_lt_O: \forall p. prime p \to O < p.
+intros.elim H.apply lt_to_le.assumption.
+qed.
+
+theorem prime_to_lt_SO: \forall p. prime p \to S O < p.
+intros.elim H.
+assumption.
+qed.
+
+(* smallest factor *)
+definition smallest_factor : nat \to nat \def
+\lambda n:nat. 
+match n with
+[ O \Rightarrow O
+| (S p) \Rightarrow 
+  match p with
+  [ O \Rightarrow (S O)
+  | (S q) \Rightarrow min_aux q (S (S O)) (\lambda m.(eqb ((S(S q)) \mod m) O))]].
+
+(* it works !
+theorem example1 : smallest_factor (S(S(S O))) = (S(S(S O))).
+normalize.reflexivity.
+qed.
+
+theorem example2: smallest_factor (S(S(S(S O)))) = (S(S O)).
+normalize.reflexivity.
+qed.
+
+theorem example3 : smallest_factor (S(S(S(S(S(S(S O))))))) = (S(S(S(S(S(S(S O))))))).
+simplify.reflexivity.
+qed. *)
+
+theorem lt_SO_smallest_factor: 
+\forall n:nat. (S O) < n \to (S O) < (smallest_factor n).
+intro.
+apply (nat_case n).intro.apply False_ind.apply (not_le_Sn_O (S O) H).
+intro.apply (nat_case m).intro. apply False_ind.apply (not_le_Sn_n (S O) H).
+intros.
+change with 
+(S O < min_aux m1 (S (S O)) (\lambda m.(eqb ((S(S m1)) \mod m) O))).
+apply (lt_to_le_to_lt ? (S (S O))).
+apply (le_n (S(S O))).
+cut ((S(S O)) = (S(S m1)) - m1).
+rewrite > Hcut.
+apply le_min_aux.
+apply sym_eq.apply plus_to_minus.
+rewrite < sym_plus.simplify.reflexivity.
+qed.
+
+theorem lt_O_smallest_factor: \forall n:nat. O < n \to O < (smallest_factor n).
+intro.
+apply (nat_case n).intro.apply False_ind.apply (not_le_Sn_n O H).
+intro.apply (nat_case m).intro.
+simplify.unfold lt.apply le_n.
+intros.apply (trans_lt ? (S O)).
+unfold lt.apply le_n.
+apply lt_SO_smallest_factor.unfold lt. apply le_S_S.
+apply le_S_S.apply le_O_n.
+qed.
+
+theorem divides_smallest_factor_n : 
+\forall n:nat. O < n \to smallest_factor n \divides n.
+intro.
+apply (nat_case n).intro.apply False_ind.apply (not_le_Sn_O O H).
+intro.apply (nat_case m).intro. simplify.
+apply (witness ? ? (S O)). simplify.reflexivity.
+intros.
+apply divides_b_true_to_divides.
+change with 
+(eqb ((S(S m1)) \mod (min_aux m1 (S (S O)) 
+  (\lambda m.(eqb ((S(S m1)) \mod m) O)))) O = true).
+apply f_min_aux_true.
+apply (ex_intro nat ? (S(S m1))).
+split.split.
+apply (le_S_S_to_le (S (S O)) (S (S m1)) ?).
+apply (minus_le_O_to_le (S (S (S O))) (S (S (S m1))) ?).
+apply (le_n O).
+rewrite < sym_plus. simplify. apply le_n.
+apply (eq_to_eqb_true (mod (S (S m1)) (S (S m1))) O ?).
+apply (mod_n_n (S (S m1)) ?).
+apply (H).
+qed.
+  
+theorem le_smallest_factor_n : 
+\forall n:nat. smallest_factor n \le n.
+intro.apply (nat_case n).simplify.apply le_n.
+intro.apply (nat_case m).simplify.apply le_n.
+intro.apply divides_to_le.
+unfold lt.apply le_S_S.apply le_O_n.
+apply divides_smallest_factor_n.
+unfold lt.apply le_S_S.apply le_O_n.
+qed.
+
+theorem lt_smallest_factor_to_not_divides: \forall n,i:nat. 
+(S O) < n \to (S O) < i \to i < (smallest_factor n) \to i \ndivides n.
+intros 2.
+apply (nat_case n).intro.apply False_ind.apply (not_le_Sn_O (S O) H).
+intro.apply (nat_case m).intro. apply False_ind.apply (not_le_Sn_n (S O) H).
+intros.
+apply divides_b_false_to_not_divides.
+apply (lt_min_aux_to_false 
+(\lambda i:nat.eqb ((S(S m1)) \mod i) O) (S (S O)) m1 i).
+assumption.
+assumption.
+qed.
+
+theorem prime_smallest_factor_n : 
+\forall n:nat. (S O) < n \to prime (smallest_factor n).
+intro.change with ((S(S O)) \le n \to (S O) < (smallest_factor n) \land 
+(\forall m:nat. m \divides smallest_factor n \to (S O) < m \to  m = (smallest_factor n))).
+intro.split.
+apply lt_SO_smallest_factor.assumption.
+intros.
+cut (le m (smallest_factor n)).
+elim (le_to_or_lt_eq m (smallest_factor n) Hcut).
+absurd (m \divides n).
+apply (transitive_divides m (smallest_factor n)).
+assumption.
+apply divides_smallest_factor_n.
+apply (trans_lt ? (S O)). unfold lt. apply le_n. exact H.
+apply lt_smallest_factor_to_not_divides.
+exact H.assumption.assumption.assumption.
+apply divides_to_le.
+apply (trans_lt O (S O)).
+apply (le_n (S O)).
+apply lt_SO_smallest_factor.
+exact H.
+assumption.
+qed.
+
+theorem prime_to_smallest_factor: \forall n. prime n \to
+smallest_factor n = n.
+intro.apply (nat_case n).intro.apply False_ind.apply (not_prime_O H).
+intro.apply (nat_case m).intro.apply False_ind.apply (not_prime_SO H).
+intro.
+change with 
+((S O) < (S(S m1)) \land 
+(\forall m:nat. m \divides S(S m1) \to (S O) < m \to  m = (S(S m1))) \to 
+smallest_factor (S(S m1)) = (S(S m1))).
+intro.elim H.apply H2.
+apply divides_smallest_factor_n.
+apply (trans_lt ? (S O)).unfold lt. apply le_n.assumption.
+apply lt_SO_smallest_factor.
+assumption.
+qed.
+
+(* a number n > O is prime iff its smallest factor is n *)
+definition primeb \def \lambda n:nat.
+match n with
+[ O \Rightarrow false
+| (S p) \Rightarrow
+  match p with
+  [ O \Rightarrow false
+  | (S q) \Rightarrow eqb (smallest_factor (S(S q))) (S(S q))]].
+
+(* it works! 
+theorem example4 : primeb (S(S(S O))) = true.
+normalize.reflexivity.
+qed.
+
+theorem example5 : primeb (S(S(S(S(S(S O)))))) = false.
+normalize.reflexivity.
+qed.
+
+theorem example6 : primeb (S(S(S(S((S(S(S(S(S(S(S O)))))))))))) = true.
+normalize.reflexivity.
+qed.
+
+theorem example7 : primeb (S(S(S(S(S(S((S(S(S(S((S(S(S(S(S(S(S O))))))))))))))))))) = true.
+normalize.reflexivity.
+qed. *)
+
+theorem primeb_to_Prop: \forall n.
+match primeb n with
+[ true \Rightarrow prime n
+| false \Rightarrow \lnot (prime n)].
+intro.
+apply (nat_case n).simplify.unfold Not.unfold prime.intro.elim H.apply (not_le_Sn_O (S O) H1).
+intro.apply (nat_case m).simplify.unfold Not.unfold prime.intro.elim H.apply (not_le_Sn_n (S O) H1).
+intro.
+change with 
+match eqb (smallest_factor (S(S m1))) (S(S m1)) with
+[ true \Rightarrow prime (S(S m1))
+| false \Rightarrow \lnot (prime (S(S m1)))].
+apply (eqb_elim (smallest_factor (S(S m1))) (S(S m1))).
+intro.simplify.
+rewrite < H.
+apply prime_smallest_factor_n.
+unfold lt.apply le_S_S.apply le_S_S.apply le_O_n.
+intro.simplify.
+change with (prime (S(S m1)) \to False).
+intro.apply H.
+apply prime_to_smallest_factor.
+assumption.
+qed.
+
+theorem primeb_true_to_prime : \forall n:nat.
+primeb n = true \to prime n.
+intros.change with
+match true with 
+[ true \Rightarrow prime n
+| false \Rightarrow \lnot (prime n)].
+rewrite < H.
+apply primeb_to_Prop.
+qed.
+
+theorem primeb_false_to_not_prime : \forall n:nat.
+primeb n = false \to \lnot (prime n).
+intros.change with
+match false with 
+[ true \Rightarrow prime n
+| false \Rightarrow \lnot (prime n)].
+rewrite < H.
+apply primeb_to_Prop.
+qed.
+
+theorem decidable_prime : \forall n:nat.decidable (prime n).
+intro.unfold decidable.
+cut 
+(match primeb n with
+[ true \Rightarrow prime n
+| false \Rightarrow \lnot (prime n)] \to (prime n) \lor \lnot (prime n)).
+apply Hcut.apply primeb_to_Prop.
+elim (primeb n).left.apply H.right.apply H.
+qed.
+
+theorem prime_to_primeb_true: \forall n:nat. 
+prime n \to primeb n = true.
+intros.
+cut (match (primeb n) with
+[ true \Rightarrow prime n
+| false \Rightarrow \lnot (prime n)] \to ((primeb n) = true)).
+apply Hcut.apply primeb_to_Prop.
+elim (primeb n).reflexivity.
+absurd (prime n).assumption.assumption.
+qed.
+
+theorem not_prime_to_primeb_false: \forall n:nat. 
+\lnot(prime n) \to primeb n = false.
+intros.
+cut (match (primeb n) with
+[ true \Rightarrow prime n
+| false \Rightarrow \lnot (prime n)] \to ((primeb n) = false)).
+apply Hcut.apply primeb_to_Prop.
+elim (primeb n).
+absurd (prime n).assumption.assumption.
+reflexivity.
+qed.
+