]> matita.cs.unibo.it Git - helm.git/blobdiff - matita/matita/broken_lib/finite_lambda/reduction.ma
finite_lambda restored
[helm.git] / matita / matita / broken_lib / finite_lambda / reduction.ma
diff --git a/matita/matita/broken_lib/finite_lambda/reduction.ma b/matita/matita/broken_lib/finite_lambda/reduction.ma
deleted file mode 100644 (file)
index 98c56e1..0000000
+++ /dev/null
@@ -1,308 +0,0 @@
-(*
-    ||M||  This file is part of HELM, an Hypertextual, Electronic        
-    ||A||  Library of Mathematics, developed at the Computer Science     
-    ||T||  Department of the University of Bologna, Italy.                     
-    ||I||                                                                 
-    ||T||  
-    ||A||  This file is distributed under the terms of the 
-    \   /  GNU General Public License Version 2        
-     \ /      
-      V_______________________________________________________________ *)
-
-include "finite_lambda/terms_and_types.ma".
-
-(* some auxiliary lemmas *)
-
-lemma nth_to_default: ∀A,l,n,d. 
-  |l| ≤ n → nth n A l d = d.
-#A #l elim l [//] #a #tl #Hind #n cases n
-  [#d normalize #H @False_ind @(absurd … H) @lt_to_not_le //
-  |#m #d normalize #H @Hind @le_S_S_to_le @H
-  ]
-qed.
-
-lemma mem_nth: ∀A,l,n,d. 
-  n < |l|  → mem ? (nth n A l d) l.
-#A #l elim l   
-  [#n #d normalize #H @False_ind @(absurd … H) @lt_to_not_le //
-  |#a #tl #Hind * normalize 
-    [#_ #_ %1 //| #m #d #HSS %2 @Hind @le_S_S_to_le @HSS]
-  ]
-qed.
-
-lemma nth_map: ∀A,B,l,f,n,d1,d2. 
-  n < |l| → nth n B (map … f l) d1 = f (nth n A l d2).
-#n #B #l #f elim l 
-  [#m #d1 #d2 normalize #H @False_ind @(absurd … H) @lt_to_not_le //
-  |#a #tl #Hind #m #d1 #d2 cases m normalize // 
-   #m1 #H @Hind @le_S_S_to_le @H
-  ]
-qed.
-
-
-
-(* end of auxiliary lemmas *)
-
-let rec to_T O D ty on ty: FinSet_of_FType O D ty → T O D ≝ 
-  match ty return (λty.FinSet_of_FType O D ty → T O D) with 
-  [atom o ⇒ λa.Val O D o a
-  |arrow ty1 ty2 ⇒ λa:FinFun ??.Vec O D ty1  
-    (map ((FinSet_of_FType O D ty1)×(FinSet_of_FType O D ty2)) 
-     (T O D) (λp.to_T O D ty2 (snd … p)) (pi1 … a))
-  ]
-.
-
-lemma is_closed_to_T: ∀O,D,ty,a. is_closed O D 0 (to_T O D ty a).
-#O #D #ty elim ty //
-#ty1 #ty2 #Hind1 #Hind2 #a normalize @cvec #m #Hmem
-lapply (mem_map ????? Hmem) * #a1 * #H1 #H2 <H2 @Hind2 
-qed.
-
-axiom inj_to_T: ∀O,D,ty,a1,a2. to_T O D ty a1 = to_T O D ty a2 → a1 = a2. 
-(* complicata 
-#O #D #ty elim ty 
-  [#o normalize #a1 #a2 #H destruct //
-  |#ty1 #ty2 #Hind1 #Hind2 * #l1 #Hl1 * #l2 #Hl2 normalize #H destruct -H
-   cut (l1=l2) [2: #H generalize in match Hl1; >H //] -Hl1 -Hl2
-   lapply e0 -e0 lapply l2 -l2 elim l1 
-    [#l2 cases l2 normalize [// |#a1 #tl1 #H destruct]
-    |#a1 #tl1 #Hind #l2 cases l2 
-      [normalize #H destruct
-      |#a2 #tl2 normalize #H @eq_f2
-        [@Hind2 *)
-        
-let rec assoc (A:FinSet) (B:Type[0]) (a:A) l1 l2 on l1 : option B ≝
-  match l1 with
-  [ nil ⇒  None ?
-  | cons hd1 tl1 ⇒ match l2 with
-    [ nil ⇒ None ?
-    | cons hd2 tl2 ⇒ if a==hd1 then Some ? hd2 else assoc A B a tl1 tl2
-    ]
-  ]. 
-  
-lemma same_assoc: ∀A,B,a,l1,v1,v2,N,N1.
-  assoc A B a l1 (v1@N::v2) = Some ? N ∧ assoc A B a l1 (v1@N1::v2) = Some ? N1 
-   ∨ assoc A B a l1 (v1@N::v2) = assoc A B a l1 (v1@N1::v2).
-#A #B #a #l1 #v1 #v2 #N #N1 lapply v1 -v1 elim l1 
-  [#v1 %2 // |#hd #tl #Hind * normalize cases (a==hd) normalize /3/]
-qed.
-
-lemma assoc_to_mem: ∀A,B,a,l1,l2,b. 
-  assoc A B a l1 l2 = Some ? b → mem ? b l2.
-#A #B #a #l1 elim l1
-  [#l2 #b normalize #H destruct
-  |#hd1 #tl1 #Hind * 
-    [#b normalize #H destruct
-    |#hd2 #tl2 #b normalize cases (a==hd1) normalize
-      [#H %1 destruct //|#H %2 @Hind @H]
-    ]
-  ]
-qed.
-
-lemma assoc_to_mem2: ∀A,B,a,l1,l2,b. 
-  assoc A B a l1 l2 = Some ? b → ∃l21,l22.l2=l21@b::l22.
-#A #B #a #l1 elim l1
-  [#l2 #b normalize #H destruct
-  |#hd1 #tl1 #Hind * 
-    [#b normalize #H destruct
-    |#hd2 #tl2 #b normalize cases (a==hd1) normalize
-      [#H %{[]} %{tl2} destruct //
-      |#H lapply (Hind … H) * #la * #lb #H1 
-       %{(hd2::la)} %{lb} >H1 //]
-    ]
-  ]
-qed.
-
-lemma assoc_map: ∀A,B,C,a,l1,l2,f,b. 
-  assoc A B a l1 l2 = Some ? b → assoc A C a l1 (map ?? f l2) = Some ? (f b).
-#A #B #C #a #l1 elim l1
-  [#l2 #f #b normalize #H destruct
-  |#hd1 #tl1 #Hind * 
-    [#f #b normalize #H destruct
-    |#hd2 #tl2 #f #b normalize cases (a==hd1) normalize
-      [#H destruct // |#H @(Hind … H)]
-    ]
-  ]
-qed.
-
-(*************************** One step reduction *******************************)
-
-inductive red (O:Type[0]) (D:O→FinSet) : T O D  →T O D → Prop ≝
-  | (* we only allow beta on closed arguments *)
-    rbeta: ∀P,M,N. is_closed O D 0 N →
-      red O D (App O D (Lambda O D P M) N) (subst O D M 0 N)
-  | riota: ∀ty,v,a,M. 
-      assoc ?? a (enum (FinSet_of_FType O D ty)) v = Some ? M →
-      red O D (App O D (Vec O D ty v) (to_T O D ty a)) M
-  | rappl: ∀M,M1,N. red O D M M1 → red O D (App O D M N) (App O D M1 N)
-  | rappr: ∀M,N,N1. red O D N N1 → red O D (App O D M N) (App O D M N1)
-  | rlam: ∀ty,N,N1. red O D N N1 → red O D (Lambda O D ty N) (Lambda O D ty N1) 
-  | rmem: ∀ty,M. red O D (Lambda O D ty M)
-      (Vec O D ty (map ?? (λa. subst O D M 0 (to_T O D ty a)) 
-      (enum (FinSet_of_FType O D ty)))) 
-  | rvec: ∀ty,N,N1,v,v1. red O D N N1 → 
-      red O D (Vec O D ty (v@N::v1)) (Vec O D ty (v@N1::v1)).
-(*********************************** inversion ********************************)
-lemma red_vec: ∀O,D,ty,v,M.
-  red O D (Vec O D ty v) M → ∃N,N1,v1,v2.
-      red O D N N1 ∧ v = v1@N::v2 ∧ M = Vec O D ty (v1@N1::v2).
-#O #D #ty #v #M #Hred inversion Hred
-  [#ty1 #M0 #N #Hc #H destruct
-  |#ty1 #v1 #a #M0 #_ #H destruct
-  |#M0 #M1 #N #_ #_ #H destruct
-  |#M0 #M1 #N #_ #_ #H destruct
-  |#ty1 #M #M1 #_ #_ #H destruct
-  |#ty1 #M0 #H destruct
-  |#ty1 #N #N1 #v1 #v2 #Hred1 #_ #H destruct #_ %{N} %{N1} %{v1} %{v2} /3/
-  ]
-qed.
-      
-lemma red_lambda: ∀O,D,ty,M,N.
-  red O D (Lambda O D ty M) N → 
-      (∃M1. red O D M M1 ∧ N = (Lambda O D ty M1)) ∨
-      N = Vec O D ty (map ?? (λa. subst O D M 0 (to_T O D ty a)) 
-      (enum (FinSet_of_FType O D ty))).
-#O #D #ty #M #N #Hred inversion Hred
-  [#ty1 #M0 #N #Hc #H destruct
-  |#ty1 #v1 #a #M0 #_ #H destruct
-  |#M0 #M1 #N #_ #_ #H destruct
-  |#M0 #M1 #N #_ #_ #H destruct
-  |#ty1 #P #P1 #redP #_ #H #H1 destruct %1 %{P1} % //
-  |#ty1 #M0 #H destruct #_ %2 //
-  |#ty1 #N #N1 #v1 #v2 #Hred1 #_ #H destruct
-  ]
-qed. 
-
-lemma red_val: ∀O,D,ty,a,N.
-  red O D (Val O D ty a) N → False.
-#O #D #ty #M #N #Hred inversion Hred
-  [#ty1 #M0 #N #Hc #H destruct
-  |#ty1 #v1 #a #M0 #_ #H destruct
-  |#M0 #M1 #N #_ #_ #H destruct
-  |#M0 #M1 #N #_ #_ #H destruct
-  |#ty1 #N1 #N2 #_ #_ #H destruct
-  |#ty1 #M0 #H destruct #_ 
-  |#ty1 #N #N1 #v1 #v2 #Hred1 #_ #H destruct
-  ]
-qed. 
-
-lemma red_rel: ∀O,D,n,N.
-  red O D (Rel O D n) N → False.
-#O #D #n #N #Hred inversion Hred
-  [#ty1 #M0 #N #Hc #H destruct
-  |#ty1 #v1 #a #M0 #_ #H destruct
-  |#M0 #M1 #N #_ #_ #H destruct
-  |#M0 #M1 #N #_ #_ #H destruct
-  |#ty1 #N1 #N2 #_ #_ #H destruct
-  |#ty1 #M0 #H destruct #_ 
-  |#ty1 #N #N1 #v1 #v2 #Hred1 #_ #H destruct
-  ]
-qed. 
-(*************************** multi step reduction *****************************)
-lemma star_red_appl: ∀O,D,M,M1,N. star ? (red O D) M M1 → 
-  star ? (red O D) (App O D M N) (App O D M1 N).
-#O #D #M #N #N1 #H elim H // 
-#P #Q #Hind #HPQ #Happ %1[|@Happ] @rappl @HPQ
-qed.
-
-lemma star_red_appr: ∀O,D,M,N,N1. star ? (red O D) N N1 → 
-  star ? (red O D) (App O D M N) (App O D M N1).
-#O #D #M #N #N1 #H elim H // 
-#P #Q #Hind #HPQ #Happ %1[|@Happ] @rappr @HPQ
-qed.
-
-lemma star_red_vec: ∀O,D,ty,N,N1,v1,v2. star ? (red O D) N N1 → 
-  star ? (red O D) (Vec O D ty (v1@N::v2)) (Vec O D ty (v1@N1::v2)).
-#O #D #ty #N #N1 #v1 #v2 #H elim H // 
-#P #Q #Hind #HPQ #Hvec %1[|@Hvec] @rvec @HPQ
-qed.
-
-lemma star_red_vec1: ∀O,D,ty,v1,v2,v. |v1| = |v2| →
-  (∀n,M. n < |v1| → star ? (red O D) (nth n ? v1 M) (nth n ? v2 M)) → 
-  star ? (red O D) (Vec O D ty (v@v1)) (Vec O D ty (v@v2)).
-#O #D #ty #v1 elim v1 
-  [#v2 #v normalize #Hv2 >(lenght_to_nil … (sym_eq … Hv2)) normalize //
-  |#N1 #tl1 #Hind * [normalize #v #H destruct] #N2 #tl2 #v normalize #HS
-   #H @(trans_star … (Vec O D ty (v@N2::tl1)))
-    [@star_red_vec @(H 0 N1) @le_S_S //
-    |>append_cons >(append_cons ??? tl2) @(Hind… (injective_S … HS))
-     #n #M #H1 @(H (S n)) @le_S_S @H1
-    ]
-  ]
-qed.
-
-lemma star_red_vec2: ∀O,D,ty,v1,v2. |v1| = |v2| →
-  (∀n,M. n < |v1| → star ? (red O D) (nth n ? v1 M) (nth n ? v2 M)) → 
-  star ? (red O D) (Vec O D ty v1) (Vec O D ty v2).
-#O #D #ty #v1 #v2 @(star_red_vec1 … [ ])
-qed.
-
-lemma star_red_lambda: ∀O,D,ty,N,N1. star ? (red O D) N N1 → 
-  star ? (red O D) (Lambda O D ty N) (Lambda O D ty N1).
-#O #D #ty #N #N1 #H elim H // 
-#P #Q #Hind #HPQ #Hlam %1[|@Hlam] @rlam @HPQ
-qed.
-
-(************************ reduction and substitution **************************)
-  
-lemma red_star_subst : ∀O,D,M,N,N1,i. 
-  star ? (red O D) N N1 → star ? (red O D) (subst O D M i N) (subst O D M i N1).
-#O #D #M #N #N1 #i #Hred lapply i -i @(T_elim … M) normalize
-  [#o #a #i //
-  |#i #n cases (leb n i) normalize // cases (eqb n i) normalize //
-  |#P #Q #HindP #HindQ #n normalize 
-   @(trans_star … (App O D (subst O D P n N1) (subst O D Q n N))) 
-    [@star_red_appl @HindP |@star_red_appr @HindQ]
-  |#ty #P #HindP #i @star_red_lambda @HindP
-  |#ty #v #Hindv #i @star_red_vec2 [>length_map >length_map //]
-   #j #Q inversion v [#_ normalize //] #a #tl #_ #Hv
-   cases (true_or_false (leb (S j) (|a::tl|))) #Hcase
-    [lapply (leb_true_to_le … Hcase) -Hcase #Hcase
-     >(nth_map ?????? a Hcase) >(nth_map ?????? a Hcase) #_ @Hindv >Hv @mem_nth //
-    |>nth_to_default 
-      [2:>length_map @le_S_S_to_le @not_le_to_lt @leb_false_to_not_le //]
-     >nth_to_default 
-      [2:>length_map @le_S_S_to_le @not_le_to_lt @leb_false_to_not_le //] //
-    ]
-  ]
-qed.
-     
-lemma red_star_subst2 : ∀O,D,M,M1,N,i. is_closed O D 0 N → 
-  red O D M M1 → star ? (red O D) (subst O D M i N) (subst O D M1 i N).
-#O #D #M #M1 #N #i #HNc #Hred lapply i -i elim Hred
-  [#ty #P #Q #HQc #i normalize @starl_to_star @sstepl 
-   [|@rbeta >(subst_closed … HQc) //] >(subst_closed … HQc) // 
-    lapply (subst_lemma ?? P ?? i 0 (is_closed_mono … HQc) HNc) // 
-    <plus_n_Sm <plus_n_O #H <H //
-  |#ty #v #a #P #HP #i normalize >(subst_closed … (le_O_n …)) //
-   @R_to_star @riota @assoc_map @HP 
-  |#P #P1 #Q #Hred #Hind #i normalize @star_red_appl @Hind
-  |#P #P1 #Q #Hred #Hind #i normalize @star_red_appr @Hind
-  |#ty #P #P1 #Hred #Hind #i normalize @star_red_lambda @Hind
-  |#ty #P #i normalize @starl_to_star @sstepl [|@rmem] 
-   @star_to_starl @star_red_vec2 [>length_map >length_map >length_map //]
-   #n #Q >length_map #H
-   cut (∃a:(FinSet_of_FType O D ty).True) 
-    [lapply H -H lapply (enum_complete (FinSet_of_FType O D ty))
-     cases (enum (FinSet_of_FType O D ty)) 
-      [#x normalize #H @False_ind @(absurd … H) @lt_to_not_le //
-      |#x #l #_ #_ %{x} //
-      ]
-    ] * #a #_
-   >(nth_map ?????? a H) >(nth_map ?????? Q) [2:>length_map @H] 
-   >(nth_map ?????? a H) 
-   lapply (subst_lemma O D P (to_T O D ty
-    (nth n (FinSet_of_FType O D ty) (enum (FinSet_of_FType O D ty)) a)) 
-   N i 0 (is_closed_mono … (is_closed_to_T …)) HNc) // <plus_n_O #H1 >H1
-   <plus_n_Sm <plus_n_O //
-  |#ty #P #Q #v #v1 #Hred #Hind #n normalize 
-   <map_append <map_append @star_red_vec @Hind
-  ]
-qed.
-   
-
-
-
-