]> matita.cs.unibo.it Git - helm.git/blobdiff - matita/matita/contribs/lambdadelta/basic_2/multiple/frees.ma
- revision of ground_2 and basic_2
[helm.git] / matita / matita / contribs / lambdadelta / basic_2 / multiple / frees.ma
index fe9292e9de49005aaa36479f85834c6d65573483..fd7ba1c91231d1cc46d16a7b811da72a0c8d3b4a 100644 (file)
@@ -19,11 +19,11 @@ include "basic_2/substitution/drop.ma".
 
 (* CONTEXT-SENSITIVE FREE VARIABLES *****************************************)
 
-inductive frees: relation4 ynat lenv term nat ≝
+inductive frees: relation4 ynat lenv term ynat ≝
 | frees_eq: ∀L,U,l,i. (∀T. ⬆[i, 1] T ≡ U → ⊥) → frees l L U i
-| frees_be: ∀I,L,K,U,W,l,i,j. l ≤ yinj j → j < i →
+| frees_be: ∀I,L,K,U,W,l,i,j. l ≤ yinj j → yinj j < i →
             (∀T. ⬆[j, 1] T ≡ U → ⊥) → ⬇[j]L ≡ K.ⓑ{I}W →
-            frees 0 K W (i-j-1) → frees l L U i.
+            frees 0 K W (⫰(i-j)) → frees l L U i.
 
 interpretation
    "context-sensitive free variables (term)"
@@ -37,7 +37,7 @@ definition frees_trans: predicate (relation3 lenv term term) ≝
 lemma frees_inv: ∀L,U,l,i. L ⊢ i ϵ 𝐅*[l]⦃U⦄ →
                  (∀T. ⬆[i, 1] T ≡ U → ⊥) ∨
                  ∃∃I,K,W,j. l ≤ yinj j & j < i & (∀T. ⬆[j, 1] T ≡ U → ⊥) &
-                            ⬇[j]L ≡ K.ⓑ{I}W & K ⊢ (i-j-1) ϵ 𝐅*[yinj 0]⦃W⦄.
+                            ⬇[j]L ≡ K.ⓑ{I}W & K ⊢ ⫰(i-j) ϵ 𝐅*[yinj 0]⦃W⦄.
 #L #U #l #i * -L -U -l -i /4 width=9 by ex5_4_intro, or_intror, or_introl/
 qed-.
 
@@ -50,49 +50,53 @@ lemma frees_inv_gref: ∀L,l,i,p. L ⊢ i ϵ 𝐅*[l]⦃§p⦄ → ⊥.
 qed-.
 
 lemma frees_inv_lref: ∀L,l,j,i. L ⊢ i ϵ 𝐅*[l]⦃#j⦄ →
-                      j = i ∨
-                      ∃∃I,K,W. l ≤ yinj j & j < i & ⬇[j] L ≡ K.ⓑ{I}W & K ⊢ (i-j-1) ϵ 𝐅*[yinj 0]⦃W⦄.
+                      yinj j = i ∨
+                      ∃∃I,K,W. l ≤ yinj j & yinj j < i & ⬇[j] L ≡ K.ⓑ{I}W & K ⊢ ⫰(i-j) ϵ 𝐅*[yinj 0]⦃W⦄.
 #L #l #x #i #H elim (frees_inv … H) -H
 [ /4 width=2 by nlift_inv_lref_be_SO, or_introl/
 | * #I #K #W #j #Hlj #Hji #Hnx #HLK #HW
-  >(nlift_inv_lref_be_SO … Hnx) -x /3 width=5 by ex4_3_intro, or_intror/
+  lapply (nlift_inv_lref_be_SO … Hnx) -Hnx #H
+  lapply (yinj_inj … H) -H #H destruct
+  /3 width=5 by ex4_3_intro, or_intror/
 ]
 qed-.
 
-lemma frees_inv_lref_free: ∀L,l,j,i. L ⊢ i ϵ 𝐅*[l]⦃#j⦄ → |L| ≤ j → j = i.
+lemma frees_inv_lref_free: ∀L,l,j,i. L ⊢ i ϵ 𝐅*[l]⦃#j⦄ → |L| ≤ j → yinj j = i.
 #L #l #j #i #H #Hj elim (frees_inv_lref … H) -H //
 * #I #K #W #_ #_ #HLK lapply (drop_fwd_length_lt2 … HLK) -I
 #H elim (lt_refl_false j) /2 width=3 by lt_to_le_to_lt/
 qed-.
 
-lemma frees_inv_lref_skip: ∀L,l,j,i. L ⊢ i ϵ 𝐅*[l]⦃#j⦄ → yinj j < l → j = i.
+lemma frees_inv_lref_skip: ∀L,l,j,i. L ⊢ i ϵ 𝐅*[l]⦃#j⦄ → yinj j < l → yinj j = i.
 #L #l #j #i #H #Hjl elim (frees_inv_lref … H) -H //
 * #I #K #W #Hlj elim (ylt_yle_false … Hlj) -Hlj //
 qed-. 
 
-lemma frees_inv_lref_ge: ∀L,l,j,i. L ⊢ i ϵ 𝐅*[l]⦃#j⦄ → i ≤ j → j = i.
+lemma frees_inv_lref_ge: ∀L,l,j,i. L ⊢ i ϵ 𝐅*[l]⦃#j⦄ → i ≤ j → yinj j = i.
 #L #l #j #i #H #Hij elim (frees_inv_lref … H) -H //
-* #I #K #W #_ #Hji elim (lt_refl_false j) -I -L -K -W -l /2 width=3 by lt_to_le_to_lt/
+* #I #K #W #_ #Hji elim (ylt_yle_false … Hji Hij)
 qed-.
 
 lemma frees_inv_lref_lt: ∀L,l,j,i.L ⊢ i ϵ 𝐅*[l]⦃#j⦄ → j < i →
-                         ∃∃I,K,W. l ≤ yinj j & ⬇[j] L ≡ K.ⓑ{I}W & K ⊢ (i-j-1) ϵ 𝐅*[yinj 0]⦃W⦄.
+                         ∃∃I,K,W. l ≤ yinj j & ⬇[j] L ≡ K.ⓑ{I}W & K ⊢ ⫰(i-j) ϵ 𝐅*[yinj 0]⦃W⦄.
 #L #l #j #i #H #Hji elim (frees_inv_lref … H) -H
-[ #H elim (lt_refl_false j) //
+[ #H elim (ylt_yle_false … Hji) //
 | * /2 width=5 by ex3_3_intro/
 ]
 qed-.
 
 lemma frees_inv_bind: ∀a,I,L,W,U,l,i. L ⊢ i ϵ 𝐅*[l]⦃ⓑ{a,I}W.U⦄ →
-                      L ⊢ i ϵ 𝐅*[l]⦃W⦄ ∨ L.ⓑ{I}W ⊢ i+1 ϵ 𝐅*[⫯l]⦃U⦄ .
+                      L ⊢ i ϵ 𝐅*[l]⦃W⦄ ∨ L.ⓑ{I}W ⊢ ⫯i ϵ 𝐅*[⫯l]⦃U⦄ .
 #a #J #L #V #U #l #i #H elim (frees_inv … H) -H
 [ #HnX elim (nlift_inv_bind … HnX) -HnX
   /4 width=2 by frees_eq, or_intror, or_introl/
 | * #I #K #W #j #Hlj #Hji #HnX #HLK #HW elim (nlift_inv_bind … HnX) -HnX
   [ /4 width=9 by frees_be, or_introl/
   | #HnT @or_intror @(frees_be … HnT) -HnT
-    [4,5,6: /2 width=1 by drop_drop, yle_succ, lt_minus_to_plus/
-    |7: >minus_plus_plus_l //
+    [4: lapply (yle_succ … Hlj) // (**)
+    |5: lapply (ylt_succ … Hji) // (**)
+    |6: /2 width=4 by drop_drop/
+    |7: <yminus_succ in HW; // (**) 
     |*: skip
     ]
   ]
@@ -112,11 +116,11 @@ qed-.
 (* Basic properties *********************************************************)
 
 lemma frees_lref_eq: ∀L,l,i. L ⊢ i ϵ 𝐅*[l]⦃#i⦄.
-/3 width=7 by frees_eq, lift_inv_lref2_be/ qed.
+/4 width=7 by frees_eq, lift_inv_lref2_be, ylt_inj/ qed.
 
 lemma frees_lref_be: ∀I,L,K,W,l,i,j. l ≤ yinj j → j < i → ⬇[j]L ≡ K.ⓑ{I}W →
-                     K ⊢ i-j-1 ϵ 𝐅*[0]⦃W⦄ → L ⊢ i ϵ 𝐅*[l]⦃#j⦄.
-/3 width=9 by frees_be, lift_inv_lref2_be/ qed.
+                     K ⊢ ⫰(i-j) ϵ 𝐅*[0]⦃W⦄ → L ⊢ i ϵ 𝐅*[l]⦃#j⦄.
+/4 width=9 by frees_be, lift_inv_lref2_be, ylt_inj/ qed.
 
 lemma frees_bind_sn: ∀a,I,L,W,U,l,i. L ⊢ i ϵ 𝐅*[l]⦃W⦄ →
                      L ⊢ i ϵ 𝐅*[l]⦃ⓑ{a,I}W.U⦄.
@@ -124,15 +128,18 @@ lemma frees_bind_sn: ∀a,I,L,W,U,l,i. L ⊢ i ϵ 𝐅*[l]⦃W⦄ →
 /4 width=9 by frees_be, frees_eq, nlift_bind_sn/
 qed.
 
-lemma frees_bind_dx: ∀a,I,L,W,U,l,i. L.ⓑ{I}W ⊢ i+1 ϵ 𝐅*[⫯l]⦃U⦄ →
+lemma frees_bind_dx: ∀a,I,L,W,U,l,i. L.ⓑ{I}W ⊢ ⫯i ϵ 𝐅*[⫯l]⦃U⦄ →
                      L ⊢ i ϵ 𝐅*[l]⦃ⓑ{a,I}W.U⦄.
 #a #J #L #V #U #l #i #H elim (frees_inv … H) -H
 [ /4 width=9 by frees_eq, nlift_bind_dx/
-| * #I #K #W #j #Hlj #Hji #HnU #HLK #HW
-  elim (yle_inv_succ1 … Hlj) -Hlj <yminus_SO2 #Hyj #H
-  lapply (ylt_O … H) -H #Hj
-  >(plus_minus_m_m j 1) in HnU; // <minus_le_minus_minus_comm in HW;
-  /4 width=9 by frees_be, nlift_bind_dx, drop_inv_drop1_lt, lt_plus_to_minus/
+| * #I #K #W #j #Hlj elim (yle_inv_succ1 … Hlj) -Hlj #Hlj
+  #Hj <Hj >yminus_succ
+  lapply (ylt_O … Hj) -Hj #Hj #H
+  lapply (ylt_inv_succ … H) -H #Hji #HnU #HLK #HW
+  @(frees_be … Hlj Hji … HW) -HW -Hlj -Hji (**) (* explicit constructor *)
+  [2: #X #H lapply (nlift_bind_dx … H) /2 width=2 by/ (**)
+  |3: lapply (drop_inv_drop1_lt … HLK ?) -HLK //
+  |*: skip
 ]
 qed.
 
@@ -157,7 +164,7 @@ qed-.
 (* Advanced inversion lemmas ************************************************)
 
 lemma frees_inv_bind_O: ∀a,I,L,W,U,i. L ⊢ i ϵ 𝐅*[0]⦃ⓑ{a,I}W.U⦄ →
-                        L ⊢ i ϵ 𝐅*[0]⦃W⦄ ∨ L.ⓑ{I}W ⊢ i+1 ϵ 𝐅*[0]⦃U⦄ .
+                        L ⊢ i ϵ 𝐅*[0]⦃W⦄ ∨ L.ⓑ{I}W ⊢ ⫯i ϵ 𝐅*[0]⦃U⦄ .
 #a #I #L #W #U #i #H elim (frees_inv_bind … H) -H
 /3 width=3 by frees_weak, or_intror, or_introl/
 qed-.