]> matita.cs.unibo.it Git - helm.git/blobdiff - matita/matita/contribs/lambdadelta/basic_2/substitution/drop_drop.ma
- some renaming according to the written version of basic_2
[helm.git] / matita / matita / contribs / lambdadelta / basic_2 / substitution / drop_drop.ma
index a2c8b19ef2fa1e5040db587258bcab05b8bfeebe..83b347d39c41075c92470380b869b9f0d82edc0c 100644 (file)
@@ -20,14 +20,14 @@ include "basic_2/substitution/drop.ma".
 (* Main properties **********************************************************)
 
 (* Basic_1: was: drop_mono *)
-theorem drop_mono: ∀L,L1,s1,d,e. ⬇[s1, d, e] L ≡ L1 →
-                   ∀L2,s2. ⬇[s2, d, e] L ≡ L2 → L1 = L2.
-#L #L1 #s1 #d #e #H elim H -L -L1 -d -e
-[ #d #e #He #L2 #s2 #H elim (drop_inv_atom1 … H) -H //
+theorem drop_mono: ∀L,L1,s1,l,m. ⬇[s1, l, m] L ≡ L1 →
+                   ∀L2,s2. ⬇[s2, l, m] L ≡ L2 → L1 = L2.
+#L #L1 #s1 #l #m #H elim H -L -L1 -l -m
+[ #l #m #Hm #L2 #s2 #H elim (drop_inv_atom1 … H) -H //
 | #I #K #V #L2 #s2 #HL12 <(drop_inv_O2 … HL12) -L2 //
-| #I #L #K #V #e #_ #IHLK #L2 #s2 #H
+| #I #L #K #V #m #_ #IHLK #L2 #s2 #H
   lapply (drop_inv_drop1 … H) -H /2 width=2 by/
-| #I #L #K1 #T #V1 #d #e #_ #HVT1 #IHLK1 #X #s2 #H
+| #I #L #K1 #T #V1 #l #m #_ #HVT1 #IHLK1 #X #s2 #H
   elim (drop_inv_skip1 … H) -H // <minus_plus_m_m #K2 #V2 #HLK2 #HVT2 #H destruct
   >(lift_inj … HVT1 … HVT2) -HVT1 -HVT2
   >(IHLK1 … HLK2) -IHLK1 -HLK2 //
@@ -35,43 +35,43 @@ theorem drop_mono: ∀L,L1,s1,d,e. ⬇[s1, d, e] L ≡ L1 →
 qed-.
 
 (* Basic_1: was: drop_conf_ge *)
-theorem drop_conf_ge: ∀L,L1,s1,d1,e1. ⬇[s1, d1, e1] L ≡ L1 →
-                      ∀L2,s2,e2. ⬇[s2, 0, e2] L ≡ L2 → d1 + e1 ≤ e2 →
-                      ⬇[s2, 0, e2 - e1] L1 ≡ L2.
-#L #L1 #s1 #d1 #e1 #H elim H -L -L1 -d1 -e1 //
-[ #d #e #_ #L2 #s2 #e2 #H #_ elim (drop_inv_atom1 … H) -H
-  #H #He destruct
-  @drop_atom #H >He // (**) (* explicit constructor *)
-| #I #L #K #V #e #_ #IHLK #L2 #s2 #e2 #H #He2
+theorem drop_conf_ge: ∀L,L1,s1,l1,m1. ⬇[s1, l1, m1] L ≡ L1 →
+                      ∀L2,s2,m2. ⬇[s2, 0, m2] L ≡ L2 → l1 + m1 ≤ m2 →
+                      ⬇[s2, 0, m2 - m1] L1 ≡ L2.
+#L #L1 #s1 #l1 #m1 #H elim H -L -L1 -l1 -m1 //
+[ #l #m #_ #L2 #s2 #m2 #H #_ elim (drop_inv_atom1 … H) -H
+  #H #Hm destruct
+  @drop_atom #H >Hm // (**) (* explicit constructor *)
+| #I #L #K #V #m #_ #IHLK #L2 #s2 #m2 #H #Hm2
   lapply (drop_inv_drop1_lt … H ?) -H /2 width=2 by ltn_to_ltO/ #HL2
   <minus_plus >minus_minus_comm /3 width=1 by monotonic_pred/
-| #I #L #K #V1 #V2 #d #e #_ #_ #IHLK #L2 #s2 #e2 #H #Hdee2
-  lapply (transitive_le 1 … Hdee2) // #He2
-  lapply (drop_inv_drop1_lt … H ?) -H // -He2 #HL2
-  lapply (transitive_le (1+e) … Hdee2) // #Hee2
+| #I #L #K #V1 #V2 #l #m #_ #_ #IHLK #L2 #s2 #m2 #H #Hlmm2
+  lapply (transitive_le 1 … Hlmm2) // #Hm2
+  lapply (drop_inv_drop1_lt … H ?) -H // -Hm2 #HL2
+  lapply (transitive_le (1+m) … Hlmm2) // #Hmm2
   @drop_drop_lt >minus_minus_comm /3 width=1 by lt_minus_to_plus_r, monotonic_le_minus_r, monotonic_pred/ (**) (* explicit constructor *)
 ]
 qed.
 
 (* Note: apparently this was missing in basic_1 *)
-theorem drop_conf_be: ∀L0,L1,s1,d1,e1. ⬇[s1, d1, e1] L0 ≡ L1 →
-                      ∀L2,e2. ⬇[e2] L0 ≡ L2 → d1 ≤ e2 → e2 ≤ d1 + e1 →
-                      ∃∃L. ⬇[s1, 0, d1 + e1 - e2] L2 ≡ L & ⬇[d1] L1 ≡ L.
-#L0 #L1 #s1 #d1 #e1 #H elim H -L0 -L1 -d1 -e1
-[ #d1 #e1 #He1 #L2 #e2 #H #Hd1 #_ elim (drop_inv_atom1 … H) -H #H #He2 destruct
-  >(He2 ?) in Hd1; // -He2 #Hd1 <(le_n_O_to_eq … Hd1) -d1
+theorem drop_conf_be: ∀L0,L1,s1,l1,m1. ⬇[s1, l1, m1] L0 ≡ L1 →
+                      ∀L2,m2. ⬇[m2] L0 ≡ L2 → l1 ≤ m2 → m2 ≤ l1 + m1 →
+                      ∃∃L. ⬇[s1, 0, l1 + m1 - m2] L2 ≡ L & ⬇[l1] L1 ≡ L.
+#L0 #L1 #s1 #l1 #m1 #H elim H -L0 -L1 -l1 -m1
+[ #l1 #m1 #Hm1 #L2 #m2 #H #Hl1 #_ elim (drop_inv_atom1 … H) -H #H #Hm2 destruct
+  >(Hm2 ?) in Hl1; // -Hm2 #Hl1 <(le_n_O_to_eq … Hl1) -l1
   /4 width=3 by drop_atom, ex2_intro/
-| normalize #I #L #V #L2 #e2 #HL2 #_ #He2
-  lapply (le_n_O_to_eq … He2) -He2 #H destruct
+| normalize #I #L #V #L2 #m2 #HL2 #_ #Hm2
+  lapply (le_n_O_to_eq … Hm2) -Hm2 #H destruct
   lapply (drop_inv_O2 … HL2) -HL2 #H destruct /2 width=3 by drop_pair, ex2_intro/
-| normalize #I #L0 #K0 #V1 #e1 #HLK0 #IHLK0 #L2 #e2 #H #_ #He21
-  lapply (drop_inv_O1_pair1 … H) -H * * #He2 #HL20
-  [ -IHLK0 -He21 destruct <minus_n_O /3 width=3 by drop_drop, ex2_intro/
+| normalize #I #L0 #K0 #V1 #m1 #HLK0 #IHLK0 #L2 #m2 #H #_ #Hm21
+  lapply (drop_inv_O1_pair1 … H) -H * * #Hm2 #HL20
+  [ -IHLK0 -Hm21 destruct <minus_n_O /3 width=3 by drop_drop, ex2_intro/
   | -HLK0 <minus_le_minus_minus_comm //
     elim (IHLK0 … HL20) -L0 /2 width=3 by monotonic_pred, ex2_intro/
   ]
-| #I #L0 #K0 #V0 #V1 #d1 #e1 >plus_plus_comm_23 #_ #_ #IHLK0 #L2 #e2 #H #Hd1e2 #He2de1
-  elim (le_inv_plus_l … Hd1e2) #_ #He2
+| #I #L0 #K0 #V0 #V1 #l1 #m1 >plus_plus_comm_23 #_ #_ #IHLK0 #L2 #m2 #H #Hl1m2 #Hm2lm1
+  elim (le_inv_plus_l … Hl1m2) #_ #Hm2
   <minus_le_minus_minus_comm //
   lapply (drop_inv_drop1_lt … H ?) -H // #HL02
   elim (IHLK0 … HL02) -L0 /3 width=3 by drop_drop, monotonic_pred, ex2_intro/
@@ -79,22 +79,22 @@ theorem drop_conf_be: ∀L0,L1,s1,d1,e1. ⬇[s1, d1, e1] L0 ≡ L1 →
 qed-.
 
 (* Note: apparently this was missing in basic_1 *)
-theorem drop_conf_le: ∀L0,L1,s1,d1,e1. ⬇[s1, d1, e1] L0 ≡ L1 →
-                      ∀L2,s2,e2. ⬇[s2, 0, e2] L0 ≡ L2 → e2 ≤ d1 →
-                      ∃∃L. ⬇[s2, 0, e2] L1 ≡ L & ⬇[s1, d1 - e2, e1] L2 ≡ L.
-#L0 #L1 #s1 #d1 #e1 #H elim H -L0 -L1 -d1 -e1
-[ #d1 #e1 #He1 #L2 #s2 #e2 #H elim (drop_inv_atom1 … H) -H
-  #H #He2 #_ destruct /4 width=3 by drop_atom, ex2_intro/
-| #I #K0 #V0 #L2 #s2 #e2 #H1 #H2
+theorem drop_conf_le: ∀L0,L1,s1,l1,m1. ⬇[s1, l1, m1] L0 ≡ L1 →
+                      ∀L2,s2,m2. ⬇[s2, 0, m2] L0 ≡ L2 → m2 ≤ l1 →
+                      ∃∃L. ⬇[s2, 0, m2] L1 ≡ L & ⬇[s1, l1 - m2, m1] L2 ≡ L.
+#L0 #L1 #s1 #l1 #m1 #H elim H -L0 -L1 -l1 -m1
+[ #l1 #m1 #Hm1 #L2 #s2 #m2 #H elim (drop_inv_atom1 … H) -H
+  #H #Hm2 #_ destruct /4 width=3 by drop_atom, ex2_intro/
+| #I #K0 #V0 #L2 #s2 #m2 #H1 #H2
   lapply (le_n_O_to_eq … H2) -H2 #H destruct
   lapply (drop_inv_pair1 … H1) -H1 #H destruct /2 width=3 by drop_pair, ex2_intro/
-| #I #K0 #K1 #V0 #e1 #HK01 #_ #L2 #s2 #e2 #H1 #H2
+| #I #K0 #K1 #V0 #m1 #HK01 #_ #L2 #s2 #m2 #H1 #H2
   lapply (le_n_O_to_eq … H2) -H2 #H destruct
   lapply (drop_inv_pair1 … H1) -H1 #H destruct /3 width=3 by drop_drop, ex2_intro/
-| #I #K0 #K1 #V0 #V1 #d1 #e1 #HK01 #HV10 #IHK01 #L2 #s2 #e2 #H #He2d1
+| #I #K0 #K1 #V0 #V1 #l1 #m1 #HK01 #HV10 #IHK01 #L2 #s2 #m2 #H #Hm2l1
   elim (drop_inv_O1_pair1 … H) -H *
-  [ -IHK01 -He2d1 #H1 #H2 destruct /3 width=5 by drop_pair, drop_skip, ex2_intro/
-  | -HK01 -HV10 #He2 #HK0L2
+  [ -IHK01 -Hm2l1 #H1 #H2 destruct /3 width=5 by drop_pair, drop_skip, ex2_intro/
+  | -HK01 -HV10 #Hm2 #HK0L2
     elim (IHK01 … HK0L2) -IHK01 -HK0L2 /2 width=1 by monotonic_pred/
     >minus_le_minus_minus_comm /3 width=3 by drop_drop_lt, ex2_intro/
   ]
@@ -103,38 +103,38 @@ qed-.
 
 (* Note: with "s2", the conclusion parameter is "s1 ∨ s2" *)
 (* Basic_1: was: drop_trans_ge *)
-theorem drop_trans_ge: ∀L1,L,s1,d1,e1. ⬇[s1, d1, e1] L1 ≡ L →
-                       ∀L2,e2. ⬇[e2] L ≡ L2 → d1 ≤ e2 → ⬇[s1, 0, e1 + e2] L1 ≡ L2.
-#L1 #L #s1 #d1 #e1 #H elim H -L1 -L -d1 -e1
-[ #d1 #e1 #He1 #L2 #e2 #H #_ elim (drop_inv_atom1 … H) -H
-  #H #He2 destruct /4 width=1 by drop_atom, eq_f2/
+theorem drop_trans_ge: ∀L1,L,s1,l1,m1. ⬇[s1, l1, m1] L1 ≡ L →
+                       ∀L2,m2. ⬇[m2] L ≡ L2 → l1 ≤ m2 → ⬇[s1, 0, m1 + m2] L1 ≡ L2.
+#L1 #L #s1 #l1 #m1 #H elim H -L1 -L -l1 -m1
+[ #l1 #m1 #Hm1 #L2 #m2 #H #_ elim (drop_inv_atom1 … H) -H
+  #H #Hm2 destruct /4 width=1 by drop_atom, eq_f2/
 | /2 width=1 by drop_gen/
 | /3 width=1 by drop_drop/
-| #I #L1 #L2 #V1 #V2 #d #e #_ #_ #IHL12 #L #e2 #H #Hde2
-  lapply (lt_to_le_to_lt 0 … Hde2) // #He2
-  lapply (lt_to_le_to_lt … (e + e2) He2 ?) // #Hee2
+| #I #L1 #L2 #V1 #V2 #l #m #_ #_ #IHL12 #L #m2 #H #Hlm2
+  lapply (lt_to_le_to_lt 0 … Hlm2) // #Hm2
+  lapply (lt_to_le_to_lt … (m + m2) Hm2 ?) // #Hmm2
   lapply (drop_inv_drop1_lt … H ?) -H // #HL2
   @drop_drop_lt // >le_plus_minus /3 width=1 by monotonic_pred/
 ]
 qed.
 
 (* Basic_1: was: drop_trans_le *)
-theorem drop_trans_le: ∀L1,L,s1,d1,e1. ⬇[s1, d1, e1] L1 ≡ L →
-                       ∀L2,s2,e2. ⬇[s2, 0, e2] L ≡ L2 → e2 ≤ d1 →
-                       ∃∃L0. ⬇[s2, 0, e2] L1 ≡ L0 & ⬇[s1, d1 - e2, e1] L0 ≡ L2.
-#L1 #L #s1 #d1 #e1 #H elim H -L1 -L -d1 -e1
-[ #d1 #e1 #He1 #L2 #s2 #e2 #H #_ elim (drop_inv_atom1 … H) -H
-  #H #He2 destruct /4 width=3 by drop_atom, ex2_intro/
-| #I #K #V #L2 #s2 #e2 #HL2 #H lapply (le_n_O_to_eq … H) -H
+theorem drop_trans_le: ∀L1,L,s1,l1,m1. ⬇[s1, l1, m1] L1 ≡ L →
+                       ∀L2,s2,m2. ⬇[s2, 0, m2] L ≡ L2 → m2 ≤ l1 →
+                       ∃∃L0. ⬇[s2, 0, m2] L1 ≡ L0 & ⬇[s1, l1 - m2, m1] L0 ≡ L2.
+#L1 #L #s1 #l1 #m1 #H elim H -L1 -L -l1 -m1
+[ #l1 #m1 #Hm1 #L2 #s2 #m2 #H #_ elim (drop_inv_atom1 … H) -H
+  #H #Hm2 destruct /4 width=3 by drop_atom, ex2_intro/
+| #I #K #V #L2 #s2 #m2 #HL2 #H lapply (le_n_O_to_eq … H) -H
   #H destruct /2 width=3 by drop_pair, ex2_intro/
-| #I #L1 #L2 #V #e #_ #IHL12 #L #s2 #e2 #HL2 #H lapply (le_n_O_to_eq … H) -H
+| #I #L1 #L2 #V #m #_ #IHL12 #L #s2 #m2 #HL2 #H lapply (le_n_O_to_eq … H) -H
   #H destruct elim (IHL12 … HL2) -IHL12 -HL2 //
   #L0 #H #HL0 lapply (drop_inv_O2 … H) -H #H destruct
   /3 width=5 by drop_pair, drop_drop, ex2_intro/
-| #I #L1 #L2 #V1 #V2 #d #e #HL12 #HV12 #IHL12 #L #s2 #e2 #H #He2d
+| #I #L1 #L2 #V1 #V2 #l #m #HL12 #HV12 #IHL12 #L #s2 #m2 #H #Hm2l
   elim (drop_inv_O1_pair1 … H) -H *
-  [ -He2d -IHL12 #H1 #H2 destruct /3 width=5 by drop_pair, drop_skip, ex2_intro/
-  | -HL12 -HV12 #He2 #HL2
+  [ -Hm2l -IHL12 #H1 #H2 destruct /3 width=5 by drop_pair, drop_skip, ex2_intro/
+  | -HL12 -HV12 #Hm2 #HL2
     elim (IHL12 … HL2) -L2 [ >minus_le_minus_minus_comm // /3 width=3 by drop_drop_lt, ex2_intro/ | /2 width=1 by monotonic_pred/ ]
   ]
 ]
@@ -142,50 +142,50 @@ qed-.
 
 (* Advanced properties ******************************************************)
 
-lemma l_liftable_llstar: ∀R. l_liftable R → ∀l. l_liftable (llstar … R l).
-#R #HR #l #K #T1 #T2 #H @(lstar_ind_r … l T2 H) -l -T2
-[ #L #s #d #e #_ #U1 #HTU1 #U2 #HTU2 -HR -K
-  >(lift_mono … HTU2 … HTU1) -T1 -U2 -d -e //
-| #l #T #T2 #_ #HT2 #IHT1 #L #s #d #e #HLK #U1 #HTU1 #U2 #HTU2
-  elim (lift_total T d e) /3 width=12 by lstar_dx/
+lemma d_liftable_llstar: ∀R. d_liftable R → ∀d. d_liftable (llstar … R d).
+#R #HR #d #K #T1 #T2 #H @(lstar_ind_r … d T2 H) -d -T2
+[ #L #s #l #m #_ #U1 #HTU1 #U2 #HTU2 -HR -K
+  >(lift_mono … HTU2 … HTU1) -T1 -U2 -l -m //
+| #d #T #T2 #_ #HT2 #IHT1 #L #s #l #m #HLK #U1 #HTU1 #U2 #HTU2
+  elim (lift_total T l m) /3 width=12 by lstar_dx/
 ]
 qed-.
 
 (* Basic_1: was: drop_conf_lt *)
-lemma drop_conf_lt: ∀L,L1,s1,d1,e1. ⬇[s1, d1, e1] L ≡ L1 →
-                    ∀I,K2,V2,s2,e2. ⬇[s2, 0, e2] L ≡ K2.ⓑ{I}V2 →
-                    e2 < d1 → let d ≝ d1 - e2 - 1 in
-                    ∃∃K1,V1. ⬇[s2, 0, e2] L1 ≡ K1.ⓑ{I}V1 &
-                             ⬇[s1, d, e1] K2 ≡ K1 & ⬆[d, e1] V1 ≡ V2.
-#L #L1 #s1 #d1 #e1 #H1 #I #K2 #V2 #s2 #e2 #H2 #He2d1
+lemma drop_conf_lt: ∀L,L1,s1,l1,m1. ⬇[s1, l1, m1] L ≡ L1 →
+                    ∀I,K2,V2,s2,m2. ⬇[s2, 0, m2] L ≡ K2.ⓑ{I}V2 →
+                    m2 < l1 → let l ≝ l1 - m2 - 1 in
+                    ∃∃K1,V1. ⬇[s2, 0, m2] L1 ≡ K1.ⓑ{I}V1 &
+                             ⬇[s1, l, m1] K2 ≡ K1 & ⬆[l, m1] V1 ≡ V2.
+#L #L1 #s1 #l1 #m1 #H1 #I #K2 #V2 #s2 #m2 #H2 #Hm2l1
 elim (drop_conf_le … H1 … H2) -L /2 width=2 by lt_to_le/ #K #HL1K #HK2
 elim (drop_inv_skip1 … HK2) -HK2 /2 width=1 by lt_plus_to_minus_r/
 #K1 #V1 #HK21 #HV12 #H destruct /2 width=5 by ex3_2_intro/
 qed-.
 
 (* Note: apparently this was missing in basic_1 *)
-lemma drop_trans_lt: ∀L1,L,s1,d1,e1. ⬇[s1, d1, e1] L1 ≡ L →
-                     ∀I,L2,V2,s2,e2. ⬇[s2, 0, e2] L ≡ L2.ⓑ{I}V2 →
-                     e2 < d1 → let d ≝ d1 - e2 - 1 in
-                     ∃∃L0,V0. ⬇[s2, 0, e2] L1 ≡ L0.ⓑ{I}V0 &
-                              ⬇[s1, d, e1] L0 ≡ L2 & ⬆[d, e1] V2 ≡ V0.
-#L1 #L #s1 #d1 #e1 #HL1 #I #L2 #V2 #s2 #e2 #HL2 #Hd21
+lemma drop_trans_lt: ∀L1,L,s1,l1,m1. ⬇[s1, l1, m1] L1 ≡ L →
+                     ∀I,L2,V2,s2,m2. ⬇[s2, 0, m2] L ≡ L2.ⓑ{I}V2 →
+                     m2 < l1 → let l ≝ l1 - m2 - 1 in
+                     ∃∃L0,V0. ⬇[s2, 0, m2] L1 ≡ L0.ⓑ{I}V0 &
+                              ⬇[s1, l, m1] L0 ≡ L2 & ⬆[l, m1] V2 ≡ V0.
+#L1 #L #s1 #l1 #m1 #HL1 #I #L2 #V2 #s2 #m2 #HL2 #Hl21
 elim (drop_trans_le … HL1 … HL2) -L /2 width=1 by lt_to_le/ #L0 #HL10 #HL02
 elim (drop_inv_skip2 … HL02) -HL02 /2 width=1 by lt_plus_to_minus_r/ #L #V1 #HL2 #HV21 #H destruct /2 width=5 by ex3_2_intro/
 qed-.
 
-lemma drop_trans_ge_comm: ∀L1,L,L2,s1,d1,e1,e2.
-                          ⬇[s1, d1, e1] L1 ≡ L → ⬇[e2] L ≡ L2 → d1 ≤ e2 →
-                          ⬇[s1, 0, e2 + e1] L1 ≡ L2.
-#L1 #L #L2 #s1 #d1 #e1 #e2
+lemma drop_trans_ge_comm: ∀L1,L,L2,s1,l1,m1,m2.
+                          ⬇[s1, l1, m1] L1 ≡ L → ⬇[m2] L ≡ L2 → l1 ≤ m2 →
+                          ⬇[s1, 0, m2 + m1] L1 ≡ L2.
+#L1 #L #L2 #s1 #l1 #m1 #m2
 >commutative_plus /2 width=5 by drop_trans_ge/
 qed.
 
-lemma drop_conf_div: ∀I1,L,K,V1,e1. ⬇[e1] L ≡ K.ⓑ{I1}V1 →
-                     ∀I2,V2,e2. ⬇[e2] L ≡ K.ⓑ{I2}V2 →
-                     ∧∧ e1 = e2 & I1 = I2 & V1 = V2.
-#I1 #L #K #V1 #e1 #HLK1 #I2 #V2 #e2 #HLK2
-elim (le_or_ge e1 e2) #He
+lemma drop_conf_div: ∀I1,L,K,V1,m1. ⬇[m1] L ≡ K.ⓑ{I1}V1 →
+                     ∀I2,V2,m2. ⬇[m2] L ≡ K.ⓑ{I2}V2 →
+                     ∧∧ m1 = m2 & I1 = I2 & V1 = V2.
+#I1 #L #K #V1 #m1 #HLK1 #I2 #V2 #m2 #HLK2
+elim (le_or_ge m1 m2) #Hm
 [ lapply (drop_conf_ge … HLK1 … HLK2 ?)
 | lapply (drop_conf_ge … HLK2 … HLK1 ?)
 ] -HLK1 -HLK2 // #HK
@@ -199,10 +199,10 @@ qed-.
 
 (* Advanced forward lemmas **************************************************)
 
-lemma drop_fwd_be: ∀L,K,s,d,e,i. ⬇[s, d, e] L ≡ K → |K| ≤ i → i < d → |L| ≤ i.
-#L #K #s #d #e #i #HLK #HK #Hd elim (lt_or_ge i (|L|)) //
+lemma drop_fwd_be: ∀L,K,s,l,m,i. ⬇[s, l, m] L ≡ K → |K| ≤ i → i < l → |L| ≤ i.
+#L #K #s #l #m #i #HLK #HK #Hl elim (lt_or_ge i (|L|)) //
 #HL elim (drop_O1_lt (Ⓕ) … HL) #I #K0 #V #HLK0 -HL
-elim (drop_conf_lt … HLK … HLK0) // -HLK -HLK0 -Hd
+elim (drop_conf_lt … HLK … HLK0) // -HLK -HLK0 -Hl
 #K1 #V1 #HK1 #_ #_ lapply (drop_fwd_length_lt2 … HK1) -I -K1 -V1
 #H elim (lt_refl_false i) /2 width=3 by lt_to_le_to_lt/
 qed-.