]> matita.cs.unibo.it Git - helm.git/blobdiff - matita/matita/contribs/lambdadelta/ground_2/relocation/nstream_after.ma
notational update in lambdadelta completed
[helm.git] / matita / matita / contribs / lambdadelta / ground_2 / relocation / nstream_after.ma
index 4724aa8be738ff5188d13a38b15343457621bd81..0f21ba6c3774da6595e4df07715653c882f7f8d9 100644 (file)
@@ -27,8 +27,8 @@ interpretation "functional composition (nstream)"
 
 (* Basic properies on compose ***********************************************)
 
-lemma compose_rew: ∀f2,f1,n1. f2@❴n1❵@(⫰*[↑n1]f2)∘f1 = f2∘(n1@f1).
-#f2 #f1 #n1 <(stream_rew … (f2∘(n1@f1))) normalize //
+lemma compose_rew: ∀f2,f1,n1. f2@❴n1❵⨮(⫰*[↑n1]f2)∘f1 = f2∘(n1⨮f1).
+#f2 #f1 #n1 <(stream_rew … (f2∘(n1f1))) normalize //
 qed.
 
 lemma compose_next: ∀f2,f1,f. f2∘f1 = f → (↑f2)∘f1 = ↑f.
@@ -38,26 +38,26 @@ qed.
 
 (* Basic inversion lemmas on compose ****************************************)
 
-lemma compose_inv_rew: ∀f2,f1,f,n1,n. f2∘(n1@f1) = n@f →
+lemma compose_inv_rew: ∀f2,f1,f,n1,n. f2∘(n1⨮f1) = n⨮f →
                        f2@❴n1❵ = n ∧ (⫰*[↑n1]f2)∘f1 = f.
-#f2 #f1 #f #n1 #n <(stream_rew … (f2∘(n1@f1))) normalize
+#f2 #f1 #f #n1 #n <(stream_rew … (f2∘(n1f1))) normalize
 #H destruct /2 width=1 by conj/
 qed-.
 
-lemma compose_inv_O2: ∀f2,f1,f,n2,n. (n2@f2)∘(⫯f1) = n@f →
+lemma compose_inv_O2: ∀f2,f1,f,n2,n. (n2⨮f2)∘(⫯f1) = n⨮f →
                       n2 = n ∧ f2∘f1 = f.
 #f2 #f1 #f #n2 #n <compose_rew
 #H destruct /2 width=1 by conj/
 qed-.
 
-lemma compose_inv_S2: ∀f2,f1,f,n2,n1,n. (n2@f2)∘(↑n1@f1) = n@f →
-                      ↑(n2+f2@❴n1❵) = n ∧ f2∘(n1@f1) = f2@❴n1❵@f.
+lemma compose_inv_S2: ∀f2,f1,f,n2,n1,n. (n2⨮f2)∘(↑n1⨮f1) = n⨮f →
+                      ↑(n2+f2@❴n1❵) = n ∧ f2∘(n1⨮f1) = f2@❴n1❵⨮f.
 #f2 #f1 #f #n2 #n1 #n <compose_rew
 #H destruct <tls_S1 /2 width=1 by conj/
 qed-.
 
-lemma compose_inv_S1: ∀f2,f1,f,n1,n. (↑f2)∘(n1@f1) = n@f →
-                      ↑(f2@❴n1❵) = n ∧ f2∘(n1@f1) = f2@❴n1❵@f.
+lemma compose_inv_S1: ∀f2,f1,f,n1,n. (↑f2)∘(n1⨮f1) = n⨮f →
+                      ↑(f2@❴n1❵) = n ∧ f2∘(n1⨮f1) = f2@❴n1❵⨮f.
 #f2 #f1 #f #n1 #n <compose_rew
 #H destruct <tls_S1 /2 width=1 by conj/
 qed-.
@@ -65,16 +65,16 @@ qed-.
 (* Specific properties on after *********************************************)
 
 lemma after_O2: ∀f2,f1,f. f2 ⊚ f1 ≘ f →
-                ∀n. n@f2 ⊚ ⫯f1 ≘ n@f.
+                ∀n. n⨮f2 ⊚ ⫯f1 ≘ n⨮f.
 #f2 #f1 #f #Hf #n elim n -n /2 width=7 by after_refl, after_next/
 qed.
 
-lemma after_S2: ∀f2,f1,f,n1,n. f2 ⊚ n1@f1 ≘ n@f →
-                ∀n2. n2@f2 ⊚ ↑n1@f1 ≘ ↑(n2+n)@f.
+lemma after_S2: ∀f2,f1,f,n1,n. f2 ⊚ n1⨮f1 ≘ n⨮f →
+                ∀n2. n2⨮f2 ⊚ ↑n1⨮f1 ≘ ↑(n2+n)⨮f.
 #f2 #f1 #f #n1 #n #Hf #n2 elim n2 -n2 /2 width=7 by after_next, after_push/
 qed.
 
-lemma after_apply: ∀n1,f2,f1,f. (⫰*[↑n1] f2) ⊚ f1 ≘ f → f2 ⊚ n1@f1 ≘ f2@❴n1❵@f.
+lemma after_apply: ∀n1,f2,f1,f. (⫰*[↑n1] f2) ⊚ f1 ≘ f → f2 ⊚ n1⨮f1 ≘ f2@❴n1❵⨮f.
 #n1 elim n1 -n1
 [ * /2 width=1 by after_O2/
 | #n1 #IH * /3 width=1 by after_S2/
@@ -96,7 +96,7 @@ theorem after_total: ∀f1,f2. f2 ⊚ f1 ≘ f2 ∘ f1.
 
 (* Specific inversion lemmas on after ***************************************)
 
-lemma after_inv_xpx: ∀f2,g2,f,n2,n. n2@f2 ⊚ g2 ≘ n@f → ∀f1. ⫯f1 = g2 →
+lemma after_inv_xpx: ∀f2,g2,f,n2,n. n2⨮f2 ⊚ g2 ≘ n⨮f → ∀f1. ⫯f1 = g2 →
                      f2 ⊚ f1 ≘ f ∧ n2 = n.
 #f2 #g2 #f #n2 elim n2 -n2
 [ #n #Hf #f1 #H2 elim (after_inv_ppx … Hf … H2) -g2 [2,3: // ]
@@ -108,8 +108,8 @@ lemma after_inv_xpx: ∀f2,g2,f,n2,n. n2@f2 ⊚ g2 ≘ n@f → ∀f1. ⫯f1 = g2
 ]
 qed-.
 
-lemma after_inv_xnx: ∀f2,g2,f,n2,n. n2@f2 ⊚ g2 ≘ n@f → ∀f1. ↑f1 = g2 →
-                     ∃∃m. f2 ⊚ f1 ≘ m@f & ↑(n2+m) = n.
+lemma after_inv_xnx: ∀f2,g2,f,n2,n. n2⨮f2 ⊚ g2 ≘ n⨮f → ∀f1. ↑f1 = g2 →
+                     ∃∃m. f2 ⊚ f1 ≘ mf & ↑(n2+m) = n.
 #f2 #g2 #f #n2 elim n2 -n2
 [ #n #Hf #f1 #H2 elim (after_inv_pnx … Hf … H2) -g2 [2,3: // ]
   #g #Hf #H elim (next_inv_seq_dx … H) -H
@@ -121,7 +121,7 @@ lemma after_inv_xnx: ∀f2,g2,f,n2,n. n2@f2 ⊚ g2 ≘ n@f → ∀f1. ↑f1 = g2
 ]
 qed-.
 
-lemma after_inv_const: ∀f2,f1,f,n1,n. n@f2 ⊚ n1@f1 ≘ n@f → f2 ⊚ f1 ≘ f ∧ 0 = n1.
+lemma after_inv_const: ∀f2,f1,f,n1,n. n⨮f2 ⊚ n1⨮f1 ≘ n⨮f → f2 ⊚ f1 ≘ f ∧ 0 = n1.
 #f2 #f1 #f #n1 #n elim n -n
 [ #H elim (after_inv_pxp … H) -H [ |*: // ]
   #g2 #Hf #H elim (push_inv_seq_dx … H) -H /2 width=1 by conj/
@@ -134,12 +134,12 @@ lemma after_inv_total: ∀f2,f1,f. f2 ⊚ f1 ≘ f → f2 ∘ f1 ≡ f.
 
 (* Specific forward lemmas on after *****************************************)
 
-lemma after_fwd_hd: ∀f2,f1,f,n1,n. f2 ⊚ n1@f1 ≘ n@f → f2@❴n1❵ = n.
+lemma after_fwd_hd: ∀f2,f1,f,n1,n. f2 ⊚ n1⨮f1 ≘ n⨮f → f2@❴n1❵ = n.
 #f2 #f1 #f #n1 #n #H lapply (after_fwd_at ? n1 0 … H) -H [1,2,3: // ]
 /3 width=2 by at_inv_O1, sym_eq/
 qed-.
 
-lemma after_fwd_tls: ∀f,f1,n1,f2,n2,n. n2@f2 ⊚ n1@f1 ≘ n@f →
+lemma after_fwd_tls: ∀f,f1,n1,f2,n2,n. n2⨮f2 ⊚ n1⨮f1 ≘ n⨮f →
                      (⫰*[n1]f2) ⊚ f1 ≘ f.
 #f #f1 #n1 elim n1 -n1
 [ #f2 #n2 #n #H elim (after_inv_xpx … H) -H //
@@ -148,6 +148,6 @@ lemma after_fwd_tls: ∀f,f1,n1,f2,n2,n. n2@f2 ⊚ n1@f1 ≘ n@f →
 ]
 qed-.
 
-lemma after_inv_apply: ∀f2,f1,f,n2,n1,n. n2@f2 ⊚ n1@f1 ≘ n@f →
-                       (n2@f2)@❴n1❵ = n ∧ (⫰*[n1]f2) ⊚ f1 ≘ f.
+lemma after_inv_apply: ∀f2,f1,f,n2,n1,n. n2⨮f2 ⊚ n1⨮f1 ≘ n⨮f →
+                       (n2f2)@❴n1❵ = n ∧ (⫰*[n1]f2) ⊚ f1 ≘ f.
 /3 width=3 by after_fwd_tls, after_fwd_hd, conj/ qed-.