]> matita.cs.unibo.it Git - helm.git/blobdiff - matita/matita/contribs/lambdadelta/static_2/relocation/sex.ma
partial commit in static_2
[helm.git] / matita / matita / contribs / lambdadelta / static_2 / relocation / sex.ma
index df09463c8085877bc9bdd7fc0c7ae95dcc99a1d9..47912ace088d171406a07842e3ed6c36bcb6cb69 100644 (file)
 (*                                                                        *)
 (**************************************************************************)
 
-include "ground_2/relocation/rtmap_sle.ma".
-include "ground_2/relocation/rtmap_sdj.ma".
+include "ground/relocation/rtmap_sle.ma".
+include "ground/relocation/rtmap_sdj.ma".
 include "static_2/notation/relations/relation_5.ma".
 include "static_2/syntax/lenv.ma".
 
 (* GENERIC ENTRYWISE EXTENSION OF CONTEXT-SENSITIVE REALTIONS FOR TERMS *****)
 
-inductive sex (RN,RP:relation3 lenv bind bind): rtmap → relation lenv ≝
+inductive sex (RN,RP:relation3 lenv bind bind): pr_map → relation lenv ≝
 | sex_atom: ∀f. sex RN RP f (⋆) (⋆)
 | sex_next: ∀f,I1,I2,L1,L2.
             sex RN RP f L1 L2 → RN L1 I1 I2 →
-            sex RN RP (↑f) (L1.ⓘ{I1}) (L2.ⓘ{I2})
+            sex RN RP (↑f) (L1.ⓘ[I1]) (L2.ⓘ[I2])
 | sex_push: ∀f,I1,I2,L1,L2.
             sex RN RP f L1 L2 → RP L1 I1 I2 →
-            sex RN RP (⫯f) (L1.ⓘ{I1}) (L2.ⓘ{I2})
+            sex RN RP (⫯f) (L1.ⓘ[I1]) (L2.ⓘ[I2])
 .
 
-interpretation "generic entrywise extension (local environment)"
-   'Relation RN RP f L1 L2 = (sex RN RP f L1 L2).
-
-definition R_pw_confluent2_sex: relation3 lenv bind bind → relation3 lenv bind bind →
-                                relation3 lenv bind bind → relation3 lenv bind bind →
-                                relation3 lenv bind bind → relation3 lenv bind bind →
-                                relation3 rtmap lenv bind ≝
-                                λR1,R2,RN1,RP1,RN2,RP2,f,L0,I0.
-                                ∀I1. R1 L0 I0 I1 → ∀I2. R2 L0 I0 I2 →
-                                ∀L1. L0 ⪤[RN1, RP1, f] L1 → ∀L2. L0 ⪤[RN2, RP2, f] L2 →
-                                ∃∃I. R2 L1 I1 I & R1 L2 I2 I.
-
-definition sex_transitive: relation3 lenv bind bind → relation3 lenv bind bind →
-                           relation3 lenv bind bind →
-                           relation3 lenv bind bind → relation3 lenv bind bind →
-                           relation3 rtmap lenv bind ≝
-                           λR1,R2,R3,RN,RP,f,L1,I1.
-                           ∀I. R1 L1 I1 I → ∀L2. L1 ⪤[RN, RP, f] L2 →
-                           ∀I2. R2 L2 I I2 → R3 L1 I1 I2.
+interpretation
+  "generic entrywise extension (local environment)"
+  'Relation RN RP f L1 L2 = (sex RN RP f L1 L2).
+
+definition R_pw_transitive_sex:
+           relation3 lenv bind bind → relation3 lenv bind bind →
+           relation3 lenv bind bind →
+           relation3 lenv bind bind → relation3 lenv bind bind →
+           relation3 pr_map lenv bind ≝
+           λR1,R2,R3,RN,RP,f,L1,I1.
+           ∀I. R1 L1 I1 I → ∀L2. L1 ⪤[RN,RP,f] L2 →
+           ∀I2. R2 L2 I I2 → R3 L1 I1 I2.
+
+definition R_pw_confluent1_sex:
+           relation3 lenv bind bind → relation3 lenv bind bind →
+           relation3 lenv bind bind → relation3 lenv bind bind →
+           relation3 pr_map lenv bind ≝
+           λR1,R2,RN,RP,f,L1,I1.
+           ∀I2. R1 L1 I1 I2 → ∀L2. L1 ⪤[RN,RP,f] L2 → R2 L2 I1 I2.
+
+definition R_pw_confluent2_sex:
+           relation3 lenv bind bind → relation3 lenv bind bind →
+           relation3 lenv bind bind → relation3 lenv bind bind →
+           relation3 lenv bind bind → relation3 lenv bind bind →
+           relation3 pr_map lenv bind ≝
+           λR1,R2,RN1,RP1,RN2,RP2,f,L0,I0.
+           ∀I1. R1 L0 I0 I1 → ∀I2. R2 L0 I0 I2 →
+           ∀L1. L0 ⪤[RN1,RP1,f] L1 → ∀L2. L0 ⪤[RN2,RP2,f] L2 →
+           ∃∃I. R2 L1 I1 I & R1 L2 I2 I.
+
+definition R_pw_replace3_sex:
+           relation3 lenv bind bind → relation3 lenv bind bind →
+           relation3 lenv bind bind → relation3 lenv bind bind →
+           relation3 lenv bind bind → relation3 lenv bind bind →
+           relation3 pr_map lenv bind ≝
+           λR1,R2,RN1,RP1,RN2,RP2,f,L0,I0.
+           ∀I1. R1 L0 I0 I1 → ∀I2. R2 L0 I0 I2 →
+           ∀L1. L0 ⪤[RN1,RP1,f] L1 → ∀L2. L0 ⪤[RN2,RP2,f] L2 →
+           ∀I. R2 L1 I1 I → R1 L2 I2 I.
 
 (* Basic inversion lemmas ***************************************************)
 
-fact sex_inv_atom1_aux: ∀RN,RP,f,X,Y. X ⪤[RN, RP, f] Y → X = ⋆ → Y = ⋆.
+fact sex_inv_atom1_aux (RN) (RP):
+     ∀f,X,Y. X ⪤[RN,RP,f] Y → X = ⋆ → Y = ⋆.
 #RN #RP #f #X #Y * -f -X -Y //
 #f #I1 #I2 #L1 #L2 #_ #_ #H destruct
 qed-.
 
 (* Basic_2A1: includes lpx_sn_inv_atom1 *)
-lemma sex_inv_atom1: ∀RN,RP,f,Y. ⋆ ⪤[RN, RP, f] Y → Y = ⋆.
+lemma sex_inv_atom1 (RN) (RP):
+      ∀f,Y. ⋆ ⪤[RN,RP,f] Y → Y = ⋆.
 /2 width=6 by sex_inv_atom1_aux/ qed-.
 
-fact sex_inv_next1_aux: ∀RN,RP,f,X,Y. X ⪤[RN, RP, f] Y → ∀g,J1,K1. X = K1.ⓘ{J1} → f = ↑g →
-                        ∃∃J2,K2. K1 ⪤[RN, RP, g] K2 & RN K1 J1 J2 & Y = K2.ⓘ{J2}.
+fact sex_inv_next1_aux (RN) (RP):
+     ∀f,X,Y. X ⪤[RN,RP,f] Y → ∀g,J1,K1. X = K1.ⓘ[J1] → f = ↑g →
+     ∃∃J2,K2. K1 ⪤[RN,RP,g] K2 & RN K1 J1 J2 & Y = K2.ⓘ[J2].
 #RN #RP #f #X #Y * -f -X -Y
 [ #f #g #J1 #K1 #H destruct
-| #f #I1 #I2 #L1 #L2 #HL #HI #g #J1 #K1 #H1 #H2 <(injective_next … H2) -g destruct
+| #f #I1 #I2 #L1 #L2 #HL #HI #g #J1 #K1 #H1 #H2 <(eq_inv_pr_next_bi … H2) -g destruct
   /2 width=5 by ex3_2_intro/
-| #f #I1 #I2 #L1 #L2 #_ #_ #g #J1 #K1 #_ #H elim (discr_push_next … H)
+| #f #I1 #I2 #L1 #L2 #_ #_ #g #J1 #K1 #_ #H elim (eq_inv_pr_push_next … H)
 ]
 qed-.
 
 (* Basic_2A1: includes lpx_sn_inv_pair1 *)
-lemma sex_inv_next1: ∀RN,RP,g,J1,K1,Y. K1.ⓘ{J1} ⪤[RN, RP, ↑g] Y →
-                     ∃∃J2,K2. K1 ⪤[RN, RP, g] K2 & RN K1 J1 J2 & Y = K2.ⓘ{J2}.
+lemma sex_inv_next1 (RN) (RP):
+      ∀g,J1,K1,Y. K1.ⓘ[J1] ⪤[RN,RP,↑g] Y →
+      ∃∃J2,K2. K1 ⪤[RN,RP,g] K2 & RN K1 J1 J2 & Y = K2.ⓘ[J2].
 /2 width=7 by sex_inv_next1_aux/ qed-.
 
-fact sex_inv_push1_aux: ∀RN,RP,f,X,Y. X ⪤[RN, RP, f] Y → ∀g,J1,K1. X = K1.ⓘ{J1} → f = ⫯g →
-                        ∃∃J2,K2. K1 ⪤[RN, RP, g] K2 & RP K1 J1 J2 & Y = K2.ⓘ{J2}.
+fact sex_inv_push1_aux (RN) (RP):
+     ∀f,X,Y. X ⪤[RN,RP,f] Y → ∀g,J1,K1. X = K1.ⓘ[J1] → f = ⫯g →
+     ∃∃J2,K2. K1 ⪤[RN,RP,g] K2 & RP K1 J1 J2 & Y = K2.ⓘ[J2].
 #RN #RP #f #X #Y * -f -X -Y
 [ #f #g #J1 #K1 #H destruct
-| #f #I1 #I2 #L1 #L2 #_ #_ #g #J1 #K1 #_ #H elim (discr_next_push … H)
-| #f #I1 #I2 #L1 #L2 #HL #HI #g #J1 #K1 #H1 #H2 <(injective_push … H2) -g destruct
+| #f #I1 #I2 #L1 #L2 #_ #_ #g #J1 #K1 #_ #H elim (eq_inv_pr_next_push … H)
+| #f #I1 #I2 #L1 #L2 #HL #HI #g #J1 #K1 #H1 #H2 <(eq_inv_pr_push_bi … H2) -g destruct
   /2 width=5 by ex3_2_intro/
 ]
 qed-.
 
-lemma sex_inv_push1: ∀RN,RP,g,J1,K1,Y. K1.ⓘ{J1} ⪤[RN, RP, ⫯g] Y →
-                     ∃∃J2,K2. K1 ⪤[RN, RP, g] K2 & RP K1 J1 J2 & Y = K2.ⓘ{J2}.
+lemma sex_inv_push1 (RN) (RP):
+      ∀g,J1,K1,Y. K1.ⓘ[J1] ⪤[RN,RP,⫯g] Y →
+      ∃∃J2,K2. K1 ⪤[RN,RP,g] K2 & RP K1 J1 J2 & Y = K2.ⓘ[J2].
 /2 width=7 by sex_inv_push1_aux/ qed-.
 
-fact sex_inv_atom2_aux: ∀RN,RP,f,X,Y. X ⪤[RN, RP, f] Y → Y = ⋆ → X = ⋆.
+fact sex_inv_atom2_aux (RN) (RP):
+     ∀f,X,Y. X ⪤[RN,RP,f] Y → Y = ⋆ → X = ⋆.
 #RN #RP #f #X #Y * -f -X -Y //
 #f #I1 #I2 #L1 #L2 #_ #_ #H destruct
 qed-.
 
 (* Basic_2A1: includes lpx_sn_inv_atom2 *)
-lemma sex_inv_atom2: ∀RN,RP,f,X. X ⪤[RN, RP, f] ⋆ → X = ⋆.
+lemma sex_inv_atom2 (RN) (RP):
+      ∀f,X. X ⪤[RN,RP,f] ⋆ → X = ⋆.
 /2 width=6 by sex_inv_atom2_aux/ qed-.
 
-fact sex_inv_next2_aux: ∀RN,RP,f,X,Y. X ⪤[RN, RP, f] Y → ∀g,J2,K2. Y = K2.ⓘ{J2} → f = ↑g →
-                        ∃∃J1,K1. K1 ⪤[RN, RP, g] K2 & RN K1 J1 J2 & X = K1.ⓘ{J1}.
+fact sex_inv_next2_aux (RN) (RP):
+     ∀f,X,Y. X ⪤[RN,RP,f] Y → ∀g,J2,K2. Y = K2.ⓘ[J2] → f = ↑g →
+     ∃∃J1,K1. K1 ⪤[RN,RP,g] K2 & RN K1 J1 J2 & X = K1.ⓘ[J1].
 #RN #RP #f #X #Y * -f -X -Y
 [ #f #g #J2 #K2 #H destruct
-| #f #I1 #I2 #L1 #L2 #HL #HI #g #J2 #K2 #H1 #H2 <(injective_next … H2) -g destruct
+| #f #I1 #I2 #L1 #L2 #HL #HI #g #J2 #K2 #H1 #H2 <(eq_inv_pr_next_bi … H2) -g destruct
   /2 width=5 by ex3_2_intro/
-| #f #I1 #I2 #L1 #L2 #_ #_ #g #J2 #K2 #_ #H elim (discr_push_next … H)
+| #f #I1 #I2 #L1 #L2 #_ #_ #g #J2 #K2 #_ #H elim (eq_inv_pr_push_next … H)
 ]
 qed-.
 
 (* Basic_2A1: includes lpx_sn_inv_pair2 *)
-lemma sex_inv_next2: ∀RN,RP,g,J2,X,K2. X ⪤[RN, RP, ↑g] K2.ⓘ{J2} →
-                     ∃∃J1,K1. K1 ⪤[RN, RP, g] K2 & RN K1 J1 J2 & X = K1.ⓘ{J1}.
+lemma sex_inv_next2 (RN) (RP):
+      ∀g,J2,X,K2. X ⪤[RN,RP,↑g] K2.ⓘ[J2] →
+      ∃∃J1,K1. K1 ⪤[RN,RP,g] K2 & RN K1 J1 J2 & X = K1.ⓘ[J1].
 /2 width=7 by sex_inv_next2_aux/ qed-.
 
-fact sex_inv_push2_aux: ∀RN,RP,f,X,Y. X ⪤[RN, RP, f] Y → ∀g,J2,K2. Y = K2.ⓘ{J2} → f = ⫯g →
-                        ∃∃J1,K1. K1 ⪤[RN, RP, g] K2 & RP K1 J1 J2 & X = K1.ⓘ{J1}.
+fact sex_inv_push2_aux (RN) (RP):
+     ∀f,X,Y. X ⪤[RN,RP,f] Y → ∀g,J2,K2. Y = K2.ⓘ[J2] → f = ⫯g →
+     ∃∃J1,K1. K1 ⪤[RN,RP,g] K2 & RP K1 J1 J2 & X = K1.ⓘ[J1].
 #RN #RP #f #X #Y * -f -X -Y
 [ #f #J2 #K2 #g #H destruct
-| #f #I1 #I2 #L1 #L2 #_ #_ #g #J2 #K2 #_ #H elim (discr_next_push … H)
-| #f #I1 #I2 #L1 #L2 #HL #HI #g #J2 #K2 #H1 #H2 <(injective_push … H2) -g destruct
+| #f #I1 #I2 #L1 #L2 #_ #_ #g #J2 #K2 #_ #H elim (eq_inv_pr_next_push … H)
+| #f #I1 #I2 #L1 #L2 #HL #HI #g #J2 #K2 #H1 #H2 <(eq_inv_pr_push_bi … H2) -g destruct
   /2 width=5 by ex3_2_intro/
 ]
 qed-.
 
-lemma sex_inv_push2: ∀RN,RP,g,J2,X,K2. X ⪤[RN, RP, ⫯g] K2.ⓘ{J2} →
-                     ∃∃J1,K1. K1 ⪤[RN, RP, g] K2 & RP K1 J1 J2 & X = K1.ⓘ{J1}.
+lemma sex_inv_push2 (RN) (RP):
+      ∀g,J2,X,K2. X ⪤[RN,RP,⫯g] K2.ⓘ[J2] →
+      ∃∃J1,K1. K1 ⪤[RN,RP,g] K2 & RP K1 J1 J2 & X = K1.ⓘ[J1].
 /2 width=7 by sex_inv_push2_aux/ qed-.
 
 (* Basic_2A1: includes lpx_sn_inv_pair *)
-lemma sex_inv_next: ∀RN,RP,f,I1,I2,L1,L2.
-                    L1.ⓘ{I1} ⪤[RN, RP, ↑f] L2.ⓘ{I2} →
-                    L1 ⪤[RN, RP, f] L2 ∧ RN L1 I1 I2.
+lemma sex_inv_next (RN) (RP):
+      ∀f,I1,I2,L1,L2.
+      L1.ⓘ[I1] ⪤[RN,RP,↑f] L2.ⓘ[I2] →
+      L1 ⪤[RN,RP,f] L2 ∧ RN L1 I1 I2.
 #RN #RP #f #I1 #I2 #L1 #L2 #H elim (sex_inv_next1 … H) -H
 #I0 #L0 #HL10 #HI10 #H destruct /2 width=1 by conj/
 qed-.
 
-lemma sex_inv_push: ∀RN,RP,f,I1,I2,L1,L2.
-                    L1.ⓘ{I1} ⪤[RN, RP, ⫯f] L2.ⓘ{I2} →
-                    L1 ⪤[RN, RP, f] L2 ∧ RP L1 I1 I2.
+lemma sex_inv_push (RN) (RP):
+      ∀f,I1,I2,L1,L2.
+      L1.ⓘ[I1] ⪤[RN,RP,⫯f] L2.ⓘ[I2] →
+      L1 ⪤[RN,RP,f] L2 ∧ RP L1 I1 I2.
 #RN #RP #f #I1 #I2 #L1 #L2 #H elim (sex_inv_push1 … H) -H
 #I0 #L0 #HL10 #HI10 #H destruct /2 width=1 by conj/
 qed-.
 
-lemma sex_inv_tl: ∀RN,RP,f,I1,I2,L1,L2. L1 ⪤[RN, RP, ⫱f] L2 →
-                  RN L1 I1 I2 → RP L1 I1 I2 → 
-                  L1.ⓘ{I1} ⪤[RN, RP, f] L2.ⓘ{I2}.
-#RN #RP #f #I1 #I2 #L2 #L2 elim (pn_split f) *
+lemma sex_inv_tl (RN) (RP):
+      ∀f,I1,I2,L1,L2. L1 ⪤[RN,RP,⫰f] L2 →
+      RN L1 I1 I2 → RP L1 I1 I2 →
+      L1.ⓘ[I1] ⪤[RN,RP,f] L2.ⓘ[I2].
+#RN #RP #f #I1 #I2 #L2 #L2 elim (pr_map_split_tl f) *
 /2 width=1 by sex_next, sex_push/
 qed-.
 
 (* Basic forward lemmas *****************************************************)
 
-lemma sex_fwd_bind: ∀RN,RP,f,I1,I2,L1,L2. 
-                    L1.ⓘ{I1} ⪤[RN, RP, f] L2.ⓘ{I2} →
-                    L1 ⪤[RN, RP, ⫱f] L2.
+lemma sex_fwd_bind (RN) (RP):
+      ∀f,I1,I2,L1,L2.
+      L1.ⓘ[I1] ⪤[RN,RP,f] L2.ⓘ[I2] → L1 ⪤[RN,RP,⫰f] L2.
 #RN #RP #f #I1 #I2 #L1 #L2 #Hf
-elim (pn_split f) * #g #H destruct
+elim (pr_map_split_tl f) * #g #H destruct
 [ elim (sex_inv_push … Hf) | elim (sex_inv_next … Hf) ] -Hf //
 qed-.
 
 (* Basic properties *********************************************************)
 
-lemma sex_eq_repl_back: ∀RN,RP,L1,L2. eq_repl_back … (λf. L1 ⪤[RN, RP, f] L2).
+lemma sex_eq_repl_back (RN) (RP):
+      ∀L1,L2. pr_eq_repl_back … (λf. L1 ⪤[RN,RP,f] L2).
 #RN #RP #L1 #L2 #f1 #H elim H -f1 -L1 -L2 //
 #f1 #I1 #I2 #L1 #L2 #_ #HI #IH #f2 #H
 [ elim (eq_inv_nx … H) -H /3 width=3 by sex_next/
@@ -169,124 +205,134 @@ lemma sex_eq_repl_back: ∀RN,RP,L1,L2. eq_repl_back … (λf. L1 ⪤[RN, RP, f]
 ]
 qed-.
 
-lemma sex_eq_repl_fwd: ∀RN,RP,L1,L2. eq_repl_fwd … (λf. L1 ⪤[RN, RP, f] L2).
-#RN #RP #L1 #L2 @eq_repl_sym /2 width=3 by sex_eq_repl_back/ (**) (* full auto fails *)
+lemma sex_eq_repl_fwd (RN) (RP):
+      ∀L1,L2. pr_eq_repl_fwd … (λf. L1 ⪤[RN,RP,f] L2).
+#RN #RP #L1 #L2 @pr_eq_repl_sym /2 width=3 by sex_eq_repl_back/ (**) (* full auto fails *)
 qed-.
 
-lemma sex_refl: ∀RN,RP. c_reflexive … RN → c_reflexive … RP →
-                ∀f.reflexive … (sex RN RP f).
+lemma sex_refl (RN) (RP):
+      c_reflexive … RN → c_reflexive … RP →
+      ∀f.reflexive … (sex RN RP f).
 #RN #RP #HRN #HRP #f #L generalize in match f; -f elim L -L //
-#L #I #IH #f elim (pn_split f) *
+#L #I #IH #f elim (pr_map_split_tl f) *
 #g #H destruct /2 width=1 by sex_next, sex_push/
 qed.
 
-lemma sex_sym: ∀RN,RP.
-               (∀L1,L2,I1,I2. RN L1 I1 I2 → RN L2 I2 I1) →
-               (∀L1,L2,I1,I2. RP L1 I1 I2 → RP L2 I2 I1) →
-               ∀f. symmetric … (sex RN RP f).
+lemma sex_sym (RN) (RP):
+      (∀L1,L2,I1,I2. RN L1 I1 I2 → RN L2 I2 I1) →
+      (∀L1,L2,I1,I2. RP L1 I1 I2 → RP L2 I2 I1) →
+      ∀f. symmetric … (sex RN RP f).
 #RN #RP #HRN #HRP #f #L1 #L2 #H elim H -L1 -L2 -f
 /3 width=2 by sex_next, sex_push/
 qed-.
 
-lemma sex_pair_repl: ∀RN,RP,f,I1,I2,L1,L2.
-                     L1.ⓘ{I1} ⪤[RN, RP, f] L2.ⓘ{I2} →
-                     ∀J1,J2. RN L1 J1 J2 → RP L1 J1 J2 →
-                     L1.ⓘ{J1} ⪤[RN, RP, f] L2.ⓘ{J2}.
+lemma sex_pair_repl (RN) (RP):
+      ∀f,I1,I2,L1,L2.
+      L1.ⓘ[I1] ⪤[RN,RP,f] L2.ⓘ[I2] →
+      ∀J1,J2. RN L1 J1 J2 → RP L1 J1 J2 →
+      L1.ⓘ[J1] ⪤[RN,RP,f] L2.ⓘ[J2].
 /3 width=3 by sex_inv_tl, sex_fwd_bind/ qed-.
 
-lemma sex_co: ∀RN1,RP1,RN2,RP2. RN1 ⊆ RN2 → RP1 ⊆ RP2 →
-              ∀f,L1,L2. L1 ⪤[RN1, RP1, f] L2 → L1 ⪤[RN2, RP2, f] L2.
+lemma sex_co (RN1) (RP1) (RN2) (RP2):
+      RN1 ⊆ RN2 → RP1 ⊆ RP2 →
+      ∀f,L1,L2. L1 ⪤[RN1,RP1,f] L2 → L1 ⪤[RN2,RP2,f] L2.
 #RN1 #RP1 #RN2 #RP2 #HRN #HRP #f #L1 #L2 #H elim H -f -L1 -L2
 /3 width=1 by sex_atom, sex_next, sex_push/
 qed-.
 
-lemma sex_co_isid: ∀RN1,RP1,RN2,RP2. RP1 ⊆ RP2 →
-                   ∀f,L1,L2. L1 ⪤[RN1, RP1, f] L2 → 𝐈⦃f⦄ →
-                   L1 ⪤[RN2, RP2, f] L2.
+lemma sex_co_isid (RN1) (RP1) (RN2) (RP2):
+      RP1 ⊆ RP2 →
+      ∀f,L1,L2. L1 ⪤[RN1,RP1,f] L2 → 𝐈❪f❫ →
+      L1 ⪤[RN2,RP2,f] L2.
 #RN1 #RP1 #RN2 #RP2 #HR #f #L1 #L2 #H elim H -f -L1 -L2 //
 #f #I1 #I2 #K1 #K2 #_ #HI12 #IH #H
-[ elim (isid_inv_next … H) -H //
-| /4 width=3 by sex_push, isid_inv_push/
+[ elim (pr_isi_inv_next … H) -H //
+| /4 width=3 by sex_push, pr_isi_inv_push/
 ]
 qed-.
 
-lemma sex_sdj: ∀RN,RP. RP ⊆ RN →
-               ∀f1,L1,L2. L1 ⪤[RN, RP, f1] L2 →
-               ∀f2. f1 ∥ f2 → L1 ⪤[RP, RN, f2] L2.
+lemma sex_sdj (RN) (RP):
+      RP ⊆ RN →
+      ∀f1,L1,L2. L1 ⪤[RN,RP,f1] L2 →
+      ∀f2. f1 ∥ f2 → L1 ⪤[RP,RN,f2] L2.
 #RN #RP #HR #f1 #L1 #L2 #H elim H -f1 -L1 -L2 //
 #f1 #I1 #I2 #L1 #L2 #_ #HI12 #IH #f2 #H12
-[ elim (sdj_inv_nx … H12) -H12 [2,3: // ]
+[ elim (pr_sdj_inv_next_sn … H12) -H12 [2,3: // ]
   #g2 #H #H2 destruct /3 width=1 by sex_push/
-| elim (sdj_inv_px … H12) -H12 [2,4: // ] *
+| elim (pr_sdj_inv_push_sn … H12) -H12 [2,4: // ] *
   #g2 #H #H2 destruct /3 width=1 by sex_next, sex_push/
 ]
 qed-.
 
-lemma sle_sex_trans: ∀RN,RP. RN ⊆ RP →
-                     ∀f2,L1,L2. L1 ⪤[RN, RP, f2] L2 →
-                     ∀f1. f1 ⊆ f2 → L1 ⪤[RN, RP, f1] L2.
+lemma sle_sex_trans (RN) (RP):
+      RN ⊆ RP →
+      ∀f2,L1,L2. L1 ⪤[RN,RP,f2] L2 →
+      ∀f1. f1 ⊆ f2 → L1 ⪤[RN,RP,f1] L2.
 #RN #RP #HR #f2 #L1 #L2 #H elim H -f2 -L1 -L2 //
 #f2 #I1 #I2 #L1 #L2 #_ #HI12 #IH #f1 #H12
-[ elim (pn_split f1) * ]
-[ /4 width=5 by sex_push, sle_inv_pn/
-| /4 width=5 by sex_next, sle_inv_nn/
-| elim (sle_inv_xp … H12) -H12 [2,3: // ]
+[ elim (pr_map_split_tl f1) * ]
+[ /4 width=5 by sex_push, pr_sle_inv_push_next/
+| /4 width=5 by sex_next, pr_sle_inv_next_bi/
+| elim (pr_sle_inv_push_dx … H12) -H12 [2,3: // ]
   #g1 #H #H1 destruct /3 width=5 by sex_push/
 ]
 qed-.
 
-lemma sle_sex_conf: ∀RN,RP. RP ⊆ RN →
-                    ∀f1,L1,L2. L1 ⪤[RN, RP, f1] L2 →
-                    ∀f2. f1 ⊆ f2 → L1 ⪤[RN, RP, f2] L2.
+lemma sle_sex_conf (RN) (RP):
+      RP ⊆ RN →
+      ∀f1,L1,L2. L1 ⪤[RN,RP,f1] L2 →
+      ∀f2. f1 ⊆ f2 → L1 ⪤[RN,RP,f2] L2.
 #RN #RP #HR #f1 #L1 #L2 #H elim H -f1 -L1 -L2 //
 #f1 #I1 #I2 #L1 #L2 #_ #HI12 #IH #f2 #H12
-[2: elim (pn_split f2) * ]
-[ /4 width=5 by sex_push, sle_inv_pp/
-| /4 width=5 by sex_next, sle_inv_pn/
-| elim (sle_inv_nx … H12) -H12 [2,3: // ]
+[2: elim (pr_map_split_tl f2) * ]
+[ /4 width=5 by sex_push, pr_sle_inv_push_bi/
+| /4 width=5 by sex_next, pr_sle_inv_push_next/
+| elim (pr_sle_inv_next_sn … H12) -H12 [2,3: // ]
   #g2 #H #H2 destruct /3 width=5 by sex_next/
 ]
 qed-.
 
-lemma sex_sle_split: ∀R1,R2,RP. c_reflexive … R1 → c_reflexive … R2 →
-                     ∀f,L1,L2. L1 ⪤[R1, RP, f] L2 → ∀g. f ⊆ g →
-                     ∃∃L. L1 ⪤[R1, RP, g] L & L ⪤[R2, cfull, f] L2.
+lemma sex_sle_split_sn (R1) (R2) (RP):
+      c_reflexive … R1 → c_reflexive … R2 →
+      ∀f,L1,L2. L1 ⪤[R1,RP,f] L2 → ∀g. f ⊆ g →
+      ∃∃L. L1 ⪤[R1,RP,g] L & L ⪤[R2,cfull,f] L2.
 #R1 #R2 #RP #HR1 #HR2 #f #L1 #L2 #H elim H -f -L1 -L2
 [ /2 width=3 by sex_atom, ex2_intro/ ]
 #f #I1 #I2 #L1 #L2 #_ #HI12 #IH #y #H
-[ elim (sle_inv_nx … H ??) -H [ |*: // ] #g #Hfg #H destruct
+[ elim (pr_sle_inv_next_sn … H ??) -H [ |*: // ] #g #Hfg #H destruct
   elim (IH … Hfg) -IH -Hfg /3 width=5 by sex_next, ex2_intro/
-| elim (sle_inv_px … H ??) -H [1,3: * |*: // ] #g #Hfg #H destruct
+| elim (pr_sle_inv_push_sn … H ??) -H [1,3: * |*: // ] #g #Hfg #H destruct
   elim (IH … Hfg) -IH -Hfg /3 width=5 by sex_next, sex_push, ex2_intro/
 ]
 qed-.
 
-lemma sex_sdj_split: ∀R1,R2,RP. c_reflexive … R1 → c_reflexive … R2 →
-                     ∀f,L1,L2. L1 ⪤[R1, RP, f] L2 → ∀g. f ∥ g →
-                     ∃∃L. L1 ⪤[RP, R1, g] L & L ⪤[R2, cfull, f] L2.
+lemma sex_sdj_split_sn (R1) (R2) (RP):
+      c_reflexive … R1 → c_reflexive … R2 →
+      ∀f,L1,L2. L1 ⪤[R1,RP,f] L2 → ∀g. f ∥ g →
+      ∃∃L. L1 ⪤[RP,R1,g] L & L ⪤[R2,cfull,f] L2.
 #R1 #R2 #RP #HR1 #HR2 #f #L1 #L2 #H elim H -f -L1 -L2
 [ /2 width=3 by sex_atom, ex2_intro/ ]
 #f #I1 #I2 #L1 #L2 #_ #HI12 #IH #y #H
-[ elim (sdj_inv_nx … H ??) -H [ |*: // ] #g #Hfg #H destruct
+[ elim (pr_sdj_inv_next_sn … H ??) -H [ |*: // ] #g #Hfg #H destruct
   elim (IH … Hfg) -IH -Hfg /3 width=5 by sex_next, sex_push, ex2_intro/
-| elim (sdj_inv_px … H ??) -H [1,3: * |*: // ] #g #Hfg #H destruct
+| elim (pr_sdj_inv_push_sn … H ??) -H [1,3: * |*: // ] #g #Hfg #H destruct
   elim (IH … Hfg) -IH -Hfg /3 width=5 by sex_next, sex_push, ex2_intro/
 ]
 qed-.
 
-lemma sex_dec: ∀RN,RP.
-               (∀L,I1,I2. Decidable (RN L I1 I2)) →
-               (∀L,I1,I2. Decidable (RP L I1 I2)) →
-               ∀L1,L2,f. Decidable (L1 ⪤[RN, RP, f] L2).
+lemma sex_dec (RN) (RP):
+      (∀L,I1,I2. Decidable (RN L I1 I2)) →
+      (∀L,I1,I2. Decidable (RP L I1 I2)) →
+      ∀L1,L2,f. Decidable (L1 ⪤[RN,RP,f] L2).
 #RN #RP #HRN #HRP #L1 elim L1 -L1 [ * | #L1 #I1 #IH * ]
 [ /2 width=1 by sex_atom, or_introl/
 | #L2 #I2 #f @or_intror #H
   lapply (sex_inv_atom1 … H) -H #H destruct
 | #f @or_intror #H
   lapply (sex_inv_atom2 … H) -H #H destruct
-| #L2 #I2 #f elim (IH L2 (⫱f)) -IH #HL12
+| #L2 #I2 #f elim (IH L2 (â«°f)) -IH #HL12
   [2: /4 width=3 by sex_fwd_bind, or_intror/ ]
-  elim (pn_split f) * #g #H destruct
+  elim (pr_map_split_tl f) * #g #H destruct
   [ elim (HRP L1 I1 I2) | elim (HRN L1 I1 I2) ] -HRP -HRN #HV12
   [1,3: /3 width=1 by sex_push, sex_next, or_introl/ ]
   @or_intror #H