X-Git-Url: http://matita.cs.unibo.it/gitweb/?p=helm.git;a=blobdiff_plain;f=components%2Facic_procedural%2FproceduralConversion.ml;fp=components%2Facic_procedural%2FproceduralConversion.ml;h=324141af46b0783c535ab07eab7720dbdb801663;hp=0000000000000000000000000000000000000000;hb=f61af501fb4608cc4fb062a0864c774e677f0d76;hpb=58ae1809c352e71e7b5530dc41e2bfc834e1aef1 diff --git a/components/acic_procedural/proceduralConversion.ml b/components/acic_procedural/proceduralConversion.ml new file mode 100644 index 000000000..324141af4 --- /dev/null +++ b/components/acic_procedural/proceduralConversion.ml @@ -0,0 +1,251 @@ +(* Copyright (C) 2003-2005, HELM Team. + * + * This file is part of HELM, an Hypertextual, Electronic + * Library of Mathematics, developed at the Computer Science + * Department, University of Bologna, Italy. + * + * HELM is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * as published by the Free Software Foundation; either version 2 + * of the License, or (at your option) any later version. + * + * HELM is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with HELM; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place - Suite 330, Boston, + * MA 02111-1307, USA. + * + * For details, see the HELM World-Wide-Web page, + * http://cs.unibo.it/helm/. + *) + +module C = Cic +module E = CicEnvironment +module Un = CicUniv +module TC = CicTypeChecker +module D = Deannotate +module UM = UriManager +module Rd = CicReduction +module PEH = ProofEngineHelpers +module PT = PrimitiveTactics + +module DTI = DoubleTypeInference + +(* helpers ******************************************************************) + +let cic = D.deannotate_term + +let rec list_sub start length = function + | _ :: tl when start > 0 -> list_sub (pred start) length tl + | hd :: tl when length > 0 -> hd :: list_sub start (pred length) tl + | _ -> [] + +(* proof construction *******************************************************) + +let lift k n = + let rec lift_xns k (uri, t) = uri, lift_term k t + and lift_ms k = function + | None -> None + | Some t -> Some (lift_term k t) + and lift_fix len k (id, name, i, ty, bo) = + id, name, i, lift_term k ty, lift_term (k + len) bo + and lift_cofix len k (id, name, ty, bo) = + id, name, lift_term k ty, lift_term (k + len) bo + and lift_term k = function + | C.ASort _ as t -> t + | C.AImplicit _ as t -> t + | C.ARel (id, rid, m, b) as t -> + if m < k then t else + if m + n > 0 then C.ARel (id, rid, m + n, b) else + assert false + | C.AConst (id, uri, xnss) -> C.AConst (id, uri, List.map (lift_xns k) xnss) + | C.AVar (id, uri, xnss) -> C.AVar (id, uri, List.map (lift_xns k) xnss) + | C.AMutInd (id, uri, tyno, xnss) -> C.AMutInd (id, uri, tyno, List.map (lift_xns k) xnss) + | C.AMutConstruct (id, uri, tyno, consno, xnss) -> C.AMutConstruct (id, uri,tyno,consno, List.map (lift_xns k) xnss) + | C.AMeta (id, i, mss) -> C.AMeta(id, i, List.map (lift_ms k) mss) + | C.AAppl (id, ts) -> C.AAppl (id, List.map (lift_term k) ts) + | C.ACast (id, te, ty) -> C.ACast (id, lift_term k te, lift_term k ty) + | C.AMutCase (id, sp, i, outty, t, pl) -> C.AMutCase (id, sp, i, lift_term k outty, lift_term k t, List.map (lift_term k) pl) + | C.AProd (id, n, s, t) -> C.AProd (id, n, lift_term k s, lift_term (succ k) t) + | C.ALambda (id, n, s, t) -> C.ALambda (id, n, lift_term k s, lift_term (succ k) t) + | C.ALetIn (id, n, ty, s, t) -> C.ALetIn (id, n, lift_term k s, lift_term k ty, lift_term (succ k) t) + | C.AFix (id, i, fl) -> C.AFix (id, i, List.map (lift_fix (List.length fl) k) fl) + | C.ACoFix (id, i, fl) -> C.ACoFix (id, i, List.map (lift_cofix (List.length fl) k) fl) + in + lift_term k + + let fake_annotate id c = + let get_binder c m = + try match List.nth c (pred m) with + | Some (C.Name s, _) -> s + | _ -> assert false + with + | Invalid_argument _ -> assert false + in + let mk_decl n v = Some (n, C.Decl v) in + let mk_def n v ty = Some (n, C.Def (v, ty)) in + let mk_fix (name, _, ty, bo) = mk_def (C.Name name) bo ty in + let mk_cofix (name, ty, bo) = mk_def (C.Name name) bo ty in + let rec ann_xns c (uri, t) = uri, ann_term c t + and ann_ms c = function + | None -> None + | Some t -> Some (ann_term c t) + and ann_fix newc c (name, i, ty, bo) = + id, name, i, ann_term c ty, ann_term (List.rev_append newc c) bo + and ann_cofix newc c (name, ty, bo) = + id, name, ann_term c ty, ann_term (List.rev_append newc c) bo + and ann_term c = function + | C.Sort sort -> C.ASort (id, sort) + | C.Implicit ann -> C.AImplicit (id, ann) + | C.Rel m -> C.ARel (id, id, m, get_binder c m) + | C.Const (uri, xnss) -> C.AConst (id, uri, List.map (ann_xns c) xnss) + | C.Var (uri, xnss) -> C.AVar (id, uri, List.map (ann_xns c) xnss) + | C.MutInd (uri, tyno, xnss) -> C.AMutInd (id, uri, tyno, List.map (ann_xns c) xnss) + | C.MutConstruct (uri, tyno, consno, xnss) -> C.AMutConstruct (id, uri,tyno,consno, List.map (ann_xns c) xnss) + | C.Meta (i, mss) -> C.AMeta(id, i, List.map (ann_ms c) mss) + | C.Appl ts -> C.AAppl (id, List.map (ann_term c) ts) + | C.Cast (te, ty) -> C.ACast (id, ann_term c te, ann_term c ty) + | C.MutCase (sp, i, outty, t, pl) -> C.AMutCase (id, sp, i, ann_term c outty, ann_term c t, List.map (ann_term c) pl) + | C.Prod (n, s, t) -> C.AProd (id, n, ann_term c s, ann_term (mk_decl n s :: c) t) + | C.Lambda (n, s, t) -> C.ALambda (id, n, ann_term c s, ann_term (mk_decl n s :: c) t) + | C.LetIn (n, s, ty, t) -> C.ALetIn (id, n, ann_term c s, ann_term c ty, ann_term (mk_def n s ty :: c) t) + | C.Fix (i, fl) -> C.AFix (id, i, List.map (ann_fix (List.rev_map mk_fix fl) c) fl) + | C.CoFix (i, fl) -> C.ACoFix (id, i, List.map (ann_cofix (List.rev_map mk_cofix fl) c) fl) + in + ann_term c + +let clear_absts m = + let rec aux k n = function + | C.AImplicit (_, None) as t -> t + | C.ALambda (id, s, v, t) when k > 0 -> + C.ALambda (id, s, v, aux (pred k) n t) + | C.ALambda (_, _, _, t) when n > 0 -> + aux 0 (pred n) (lift 1 (-1) t) + | t when n > 0 -> + Printf.eprintf "CLEAR: %u %s\n" n (CicPp.ppterm (cic t)); + assert false + | t -> t + in + aux m + +let hole id = C.AImplicit (id, Some `Hole) + +let meta id = C.AImplicit (id, None) + +let anon = C.Anonymous + +let generalize n = + let is_meta = + let map b = function + | C.AImplicit (_, None) when b -> b + | _ -> false + in + List.fold_left map true + in + let rec gen_fix len k (id, name, i, ty, bo) = + id, name, i, gen_term k ty, gen_term (k + len) bo + and gen_cofix len k (id, name, ty, bo) = + id, name, gen_term k ty, gen_term (k + len) bo + and gen_term k = function + | C.ASort (id, _) + | C.AImplicit (id, _) + | C.AConst (id, _, _) + | C.AVar (id, _, _) + | C.AMutInd (id, _, _, _) + | C.AMutConstruct (id, _, _, _, _) + | C.AMeta (id, _, _) -> meta id + | C.ARel (id, _, m, _) -> + if succ (k - n) <= m && m <= k then hole id else meta id + | C.AAppl (id, ts) -> + let ts = List.map (gen_term k) ts in + if is_meta ts then meta id else C.AAppl (id, ts) + | C.ACast (id, te, ty) -> + let te, ty = gen_term k te, gen_term k ty in + if is_meta [te; ty] then meta id else C.ACast (id, te, ty) + | C.AMutCase (id, sp, i, outty, t, pl) -> + let outty, t, pl = gen_term k outty, gen_term k t, List.map (gen_term k) pl in + if is_meta (outty :: t :: pl) then meta id else hole id (* C.AMutCase (id, sp, i, outty, t, pl) *) + | C.AProd (id, _, s, t) -> + let s, t = gen_term k s, gen_term (succ k) t in + if is_meta [s; t] then meta id else C.AProd (id, anon, s, t) + | C.ALambda (id, _, s, t) -> + let s, t = gen_term k s, gen_term (succ k) t in + if is_meta [s; t] then meta id else C.ALambda (id, anon, s, t) + | C.ALetIn (id, _, s, ty, t) -> + let s, ty, t = gen_term k s, gen_term k ty, gen_term (succ k) t in + if is_meta [s; t] then meta id else C.ALetIn (id, anon, s, ty, t) + | C.AFix (id, i, fl) -> C.AFix (id, i, List.map (gen_fix (List.length fl) k) fl) + | C.ACoFix (id, i, fl) -> C.ACoFix (id, i, List.map (gen_cofix (List.length fl) k) fl) + in + gen_term 0 + +let mk_pattern psno predicate = + let body = generalize psno predicate in + clear_absts 0 psno body + +let get_clears c p xtypes = + let meta = C.Implicit None in + let rec aux c names p it et = function + | [] -> + List.rev c, List.rev names + | Some (C.Name name as n, C.Decl v) as hd :: tl -> + let hd, names, v = + if DTI.does_not_occur 1 p && DTI.does_not_occur 1 it && DTI.does_not_occur 1 et then + Some (C.Anonymous, C.Decl v), name :: names, meta + else + hd, names, v + in + let p = C.Lambda (n, v, p) in + let it = C.Prod (n, v, it) in + let et = C.Prod (n, v, et) in + aux (hd :: c) names p it et tl + | Some (C.Name name as n, C.Def (v, x)) as hd :: tl -> + let hd, names, v = + if DTI.does_not_occur 1 p && DTI.does_not_occur 1 it && DTI.does_not_occur 1 et then + Some (C.Anonymous, C.Def (v, x)), name :: names, meta + else + hd, names, v + in + let p = C.LetIn (n, v, x, p) in + let it = C.LetIn (n, v, x, it) in + let et = C.LetIn (n, v, x, et) in + aux (hd :: c) names p it et tl + | Some (C.Anonymous as n, C.Decl v) as hd :: tl -> + let p = C.Lambda (n, meta, p) in + let it = C.Lambda (n, meta, it) in + let et = C.Lambda (n, meta, et) in + aux (hd :: c) names p it et tl + | Some (C.Anonymous as n, C.Def (v, _)) as hd :: tl -> + let p = C.LetIn (n, meta, meta, p) in + let it = C.LetIn (n, meta, meta, it) in + let et = C.LetIn (n, meta, meta, et) in + aux (hd :: c) names p it et tl + | None :: tl -> assert false + in + match xtypes with + | Some (it, et) -> aux [] [] p it et c + | None -> c, [] + +let clear c hyp = + let rec aux c = function + | [] -> List.rev c + | Some (C.Name name, entry) :: tail when name = hyp -> + aux (Some (C.Anonymous, entry) :: c) tail + | entry :: tail -> aux (entry :: c) tail + in + aux [] c + +let elim_inferred_type context goal arg using cpattern = + let metasenv, ugraph = [], Un.empty_ugraph in + let ety, _ugraph = TC.type_of_aux' metasenv context using ugraph in + let _splits, args_no = PEH.split_with_whd (context, ety) in + let _metasenv, predicate, _arg, actual_args = PT.mk_predicate_for_elim + ~context ~metasenv ~ugraph ~goal ~arg ~using ~cpattern ~args_no + in + let ty = C.Appl (predicate :: actual_args) in + let upto = List.length actual_args in + Rd.head_beta_reduce ~delta:false ~upto ty