X-Git-Url: http://matita.cs.unibo.it/gitweb/?p=helm.git;a=blobdiff_plain;f=components%2Facic_procedural%2FproceduralOptimizer.ml;fp=components%2Facic_procedural%2FproceduralOptimizer.ml;h=776d52645901dbbb316b6caea9ee03a9d9c01637;hp=0000000000000000000000000000000000000000;hb=f61af501fb4608cc4fb062a0864c774e677f0d76;hpb=58ae1809c352e71e7b5530dc41e2bfc834e1aef1 diff --git a/components/acic_procedural/proceduralOptimizer.ml b/components/acic_procedural/proceduralOptimizer.ml new file mode 100644 index 000000000..776d52645 --- /dev/null +++ b/components/acic_procedural/proceduralOptimizer.ml @@ -0,0 +1,291 @@ +(* Copyright (C) 2003-2005, HELM Team. + * + * This file is part of HELM, an Hypertextual, Electronic + * Library of Mathematics, developed at the Computer Science + * Department, University of Bologna, Italy. + * + * HELM is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * as published by the Free Software Foundation; either version 2 + * of the License, or (at your option) any later version. + * + * HELM is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with HELM; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place - Suite 330, Boston, + * MA 02111-1307, USA. + * + * For details, see the HELM World-Wide-Web page, + * http://cs.unibo.it/helm/. + *) + +module C = Cic +module Pp = CicPp +module I = CicInspect +module S = CicSubstitution +module DTI = DoubleTypeInference +module HEL = HExtlib +module PEH = ProofEngineHelpers +module TC = CicTypeChecker +module Un = CicUniv + +module H = ProceduralHelpers +module Cl = ProceduralClassify + +(* term preprocessing: optomization 1 ***************************************) + +let defined_premise = "DEFINED" + +let get_type msg c bo = +try + let ty, _ = TC.type_of_aux' [] c bo Un.empty_ugraph in + ty +with e -> failwith (msg ^ ": " ^ Printexc.to_string e) + +let define c v = + let name = C.Name defined_premise in + let ty = get_type "define" c v in + C.LetIn (name, v, ty, C.Rel 1) + +let clear_absts m = + let rec aux k n = function + | C.Lambda (s, v, t) when k > 0 -> + C.Lambda (s, v, aux (pred k) n t) + | C.Lambda (_, _, t) when n > 0 -> + aux 0 (pred n) (S.lift (-1) t) + | t when n > 0 -> + Printf.eprintf "CicPPP clear_absts: %u %s\n" n (Pp.ppterm t); + assert false + | t -> t + in + aux m + +let rec add_abst k = function + | C.Lambda (s, v, t) when k > 0 -> C.Lambda (s, v, add_abst (pred k) t) + | t when k > 0 -> assert false + | t -> C.Lambda (C.Anonymous, C.Implicit None, S.lift 1 t) + +let rec opt1_letin g es c name v w t = + let name = H.mk_fresh_name c name in + let entry = Some (name, C.Def (v, w)) in + let g t = + if DTI.does_not_occur 1 t then begin + let x = S.lift (-1) t in + HLog.warn "Optimizer: remove 1"; opt1_proof g true c x + end else + let g = function + | C.LetIn (nname, vv, ww, tt) when H.is_proof c v -> + let eentry = Some (nname, C.Def (vv, ww)) in + let ttw = get_type "opt1_letin 1" (eentry :: c) tt in + let x = C.LetIn (nname, vv, ww, + C.LetIn (name, tt, ttw, S.lift_from 2 1 t)) in + HLog.warn "Optimizer: swap 1"; opt1_proof g true c x + | v when H.is_proof c v && H.is_atomic v -> + let x = S.subst v t in + HLog.warn "Optimizer: remove 5"; opt1_proof g true c x + | v -> + g (C.LetIn (name, v, w, t)) + in + if es then opt1_term g es c v else g v + in + if es then opt1_proof g es (entry :: c) t else g t + +and opt1_lambda g es c name w t = + let name = H.mk_fresh_name c name in + let entry = Some (name, C.Decl w) in + let g t = g (C.Lambda (name, w, t)) in + if es then opt1_proof g es (entry :: c) t else g t + +and opt1_appl g es c t vs = + let g vs = + let g = function + | C.LetIn (mame, vv, tyty, tt) -> + let vs = List.map (S.lift 1) vs in + let x = C.LetIn (mame, vv, tyty, C.Appl (tt :: vs)) in + HLog.warn "Optimizer: swap 2"; opt1_proof g true c x + | C.Lambda (name, ww, tt) -> + let v, vs = List.hd vs, List.tl vs in + let w = get_type "opt1_appl 1" c v in + let x = C.Appl (C.LetIn (name, v, w, tt) :: vs) in + HLog.warn "Optimizer: remove 2"; opt1_proof g true c x + | C.Appl vvs -> + let x = C.Appl (vvs @ vs) in + HLog.warn "Optimizer: nested application"; opt1_proof g true c x + | t -> + let rec aux d rvs = function + | [], _ -> + let x = C.Appl (t :: List.rev rvs) in + if d then opt1_proof g true c x else g x + | v :: vs, (cc, bb) :: cs -> + if H.is_not_atomic v && I.S.mem 0 cc && bb then begin + HLog.warn "Optimizer: anticipate 1"; + aux true (define c v :: rvs) (vs, cs) + end else + aux d (v :: rvs) (vs, cs) + | _, [] -> assert false + in + let h () = + let classes, conclusion = Cl.classify c (H.get_type c t) in + let csno, vsno = List.length classes, List.length vs in + if csno < vsno then + let vvs, vs = HEL.split_nth csno vs in + let x = C.Appl (define c (C.Appl (t :: vvs)) :: vs) in + HLog.warn "Optimizer: anticipate 2"; opt1_proof g true c x + else match conclusion, List.rev vs with + | Some _, rv :: rvs when csno = vsno && H.is_not_atomic rv -> + let x = C.Appl (t :: List.rev rvs @ [define c rv]) in + HLog.warn "Optimizer: anticipate 3"; opt1_proof g true c x + | _ (* Some _, _ *) -> + g (C.Appl (t :: vs)) +(* | None, _ -> + aux false [] (vs, classes) +*) in + let rec aux h prev = function + | C.LetIn (name, vv, tyty, tt) :: vs -> + let t = S.lift 1 t in + let prev = List.map (S.lift 1) prev in + let vs = List.map (S.lift 1) vs in + let y = C.Appl (t :: List.rev prev @ tt :: vs) in + let ww = get_type "opt1_appl 2" c vv in + let x = C.LetIn (name, vv, ww, y) in + HLog.warn "Optimizer: swap 3"; opt1_proof g true c x + | v :: vs -> aux h (v :: prev) vs + | [] -> h () + in + aux h [] vs + in + if es then opt1_proof g es c t else g t + in + if es then H.list_map_cps g (fun h -> opt1_term h es c) vs else g vs + +and opt1_mutcase g es c uri tyno outty arg cases = + let eliminator = H.get_default_eliminator c uri tyno outty in + let lpsno, (_, _, _, constructors) = H.get_ind_type uri tyno in + let ps, sort_disp = H.get_ind_parameters c arg in + let lps, rps = HEL.split_nth lpsno ps in + let rpsno = List.length rps in + let predicate = clear_absts rpsno (1 - sort_disp) outty in + let is_recursive t = + I.S.mem tyno (I.get_mutinds_of_uri uri t) + in + let map2 case (_, cty) = + let map (h, case, k) (_, premise) = + if h > 0 then pred h, case, k else + if is_recursive premise then + 0, add_abst k case, k + 2 + else + 0, case, succ k + in + let premises, _ = PEH.split_with_whd (c, cty) in + let _, lifted_case, _ = + List.fold_left map (lpsno, case, 1) (List.rev (List.tl premises)) + in + lifted_case + in + let lifted_cases = List.map2 map2 cases constructors in + let args = eliminator :: lps @ predicate :: lifted_cases @ rps @ [arg] in + let x = H.refine c (C.Appl args) in + HLog.warn "Optimizer: remove 3"; opt1_proof g es c x + +and opt1_cast g es c t w = + let g t = HLog.warn "Optimizer: remove 4"; g t in + if es then opt1_proof g es c t else g t + +and opt1_other g es c t = g t + +and opt1_proof g es c = function + | C.LetIn (name, v, ty, t) -> opt1_letin g es c name v ty t + | C.Lambda (name, w, t) -> opt1_lambda g es c name w t + | C.Appl (t :: v :: vs) -> opt1_appl g es c t (v :: vs) + | C.Appl [t] -> opt1_proof g es c t + | C.MutCase (u, n, t, v, ws) -> opt1_mutcase g es c u n t v ws + | C.Cast (t, w) -> opt1_cast g es c t w + | t -> opt1_other g es c t + +and opt1_term g es c t = + if H.is_proof c t then opt1_proof g es c t else g t + +(* term preprocessing: optomization 2 ***************************************) + +let expanded_premise = "EXPANDED" + +let eta_expand g tys t = + assert (tys <> []); + let name i = Printf.sprintf "%s%u" expanded_premise i in + let lambda i ty t = C.Lambda (C.Name (name i), ty, t) in + let arg i = C.Rel (succ i) in + let rec aux i f a = function + | [] -> f, a + | (_, ty) :: tl -> aux (succ i) (H.compose f (lambda i ty)) (arg i :: a) tl + in + let n = List.length tys in + let absts, args = aux 0 H.identity [] tys in + let t = match S.lift n t with + | C.Appl ts -> C.Appl (ts @ args) + | t -> C.Appl (t :: args) + in + g (absts t) + +let rec opt2_letin g c name v w t = + let entry = Some (name, C.Def (v, w)) in + let g t = + let g v = g (C.LetIn (name, v, w, t)) in + opt2_term g c v + in + opt2_proof g (entry :: c) t + +and opt2_lambda g c name w t = + let entry = Some (name, C.Decl w) in + let g t = g (C.Lambda (name, w, t)) in + opt2_proof g (entry :: c) t + +and opt2_appl g c t vs = + let g vs = + let x = C.Appl (t :: vs) in + let vsno = List.length vs in + let _, csno = PEH.split_with_whd (c, H.get_type c t) in + if vsno < csno then + let tys, _ = PEH.split_with_whd (c, H.get_type c x) in + let tys = List.rev (List.tl tys) in + let tys, _ = HEL.split_nth (csno - vsno) tys in + HLog.warn "Optimizer: eta 1"; eta_expand g tys x + else g x + in + H.list_map_cps g (fun h -> opt2_term h c) vs + +and opt2_other g c t = + let tys, csno = PEH.split_with_whd (c, H.get_type c t) in + if csno > 0 then begin + let tys = List.rev (List.tl tys) in + HLog.warn "Optimizer: eta 2"; eta_expand g tys t + end else g t + +and opt2_proof g c = function + | C.LetIn (name, v, w, t) -> opt2_letin g c name v w t + | C.Lambda (name, w, t) -> opt2_lambda g c name w t + | C.Appl (t :: vs) -> opt2_appl g c t vs + | t -> opt2_other g c t + +and opt2_term g c t = + if H.is_proof c t then opt2_proof g c t else g t + +(* object preprocessing *****************************************************) + +let optimize_obj = function + | C.Constant (name, Some bo, ty, pars, attrs) -> + let bo, ty = H.cic_bc [] bo, H.cic_bc [] ty in + let g bo = + Printf.eprintf "Optimized : %s\nPost Nodes: %u\n" + (Pp.ppterm bo) (I.count_nodes 0 bo); + let _ = H.get_type [] (C.Cast (bo, ty)) in + C.Constant (name, Some bo, ty, pars, attrs) + in + Printf.eprintf "BEGIN: %s\nPre Nodes : %u\n" + name (I.count_nodes 0 bo); + begin try opt1_term g (* (opt2_term g []) *) true [] bo + with e -> failwith ("PPP: " ^ Printexc.to_string e) end + | obj -> obj