X-Git-Url: http://matita.cs.unibo.it/gitweb/?p=helm.git;a=blobdiff_plain;f=components%2Fcic%2FcicUtil.ml;fp=components%2Fcic%2FcicUtil.ml;h=75b7fd2cc8505390ec0ff96cc203d9744fd5b390;hp=0000000000000000000000000000000000000000;hb=f61af501fb4608cc4fb062a0864c774e677f0d76;hpb=58ae1809c352e71e7b5530dc41e2bfc834e1aef1 diff --git a/components/cic/cicUtil.ml b/components/cic/cicUtil.ml new file mode 100644 index 000000000..75b7fd2cc --- /dev/null +++ b/components/cic/cicUtil.ml @@ -0,0 +1,599 @@ +(* Copyright (C) 2004, HELM Team. + * + * This file is part of HELM, an Hypertextual, Electronic + * Library of Mathematics, developed at the Computer Science + * Department, University of Bologna, Italy. + * + * HELM is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * as published by the Free Software Foundation; either version 2 + * of the License, or (at your option) any later version. + * + * HELM is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with HELM; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place - Suite 330, Boston, + * MA 02111-1307, USA. + * + * For details, see the HELM World-Wide-Web page, + * http://helm.cs.unibo.it/ + *) + +(* $Id$ *) + +module C = Cic + +exception Meta_not_found of int +exception Subst_not_found of int + +let lookup_meta index metasenv = + try + List.find (fun (index', _, _) -> index = index') metasenv + with Not_found -> raise (Meta_not_found index) + +let lookup_subst n subst = + try + List.assoc n subst + with Not_found -> raise (Subst_not_found n) + +let exists_meta index = List.exists (fun (index', _, _) -> (index = index')) + +(* clean_up_meta take a substitution, a metasenv a meta_inex and a local +context l and clean up l with respect to the hidden hipothesis in the +canonical context *) + +let clean_up_local_context subst metasenv n l = + let cc = + (try + let (cc,_,_) = lookup_subst n subst in cc + with Subst_not_found _ -> + try + let (_,cc,_) = lookup_meta n metasenv in cc + with Meta_not_found _ -> assert false) in + (try + List.map2 + (fun t1 t2 -> + match t1,t2 with + None , _ -> None + | _ , t -> t) cc l + with + Invalid_argument _ -> + assert false) + +let is_closed = + let module C = Cic in + let rec is_closed k = + function + C.Rel m when m > k -> false + | C.Rel m -> true + | C.Meta (_,l) -> + List.fold_left + (fun i t -> i && (match t with None -> true | Some t -> is_closed k t) + ) true l + | C.Sort _ -> true + | C.Implicit _ -> assert false + | C.Cast (te,ty) -> is_closed k te && is_closed k ty + | C.Prod (name,so,dest) -> is_closed k so && is_closed (k+1) dest + | C.Lambda (_,so,dest) -> is_closed k so && is_closed (k+1) dest + | C.LetIn (_,so,ty,dest) -> + is_closed k so && is_closed k ty && is_closed (k+1) dest + | C.Appl l -> + List.fold_right (fun x i -> i && is_closed k x) l true + | C.Var (_,exp_named_subst) + | C.Const (_,exp_named_subst) + | C.MutInd (_,_,exp_named_subst) + | C.MutConstruct (_,_,_,exp_named_subst) -> + List.fold_right (fun (_,x) i -> i && is_closed k x) + exp_named_subst true + | C.MutCase (_,_,out,te,pl) -> + is_closed k out && is_closed k te && + List.fold_right (fun x i -> i && is_closed k x) pl true + | C.Fix (_,fl) -> + let len = List.length fl in + let k_plus_len = k + len in + List.fold_right + (fun (_,_,ty,bo) i -> i && is_closed k ty && is_closed k_plus_len bo + ) fl true + | C.CoFix (_,fl) -> + let len = List.length fl in + let k_plus_len = k + len in + List.fold_right + (fun (_,ty,bo) i -> i && is_closed k ty && is_closed k_plus_len bo + ) fl true +in + is_closed 0 +;; + +let rec is_meta_closed = + function + C.Rel _ -> true + | C.Meta _ -> false + | C.Sort _ -> true + | C.Implicit _ -> assert false + | C.Cast (te,ty) -> is_meta_closed te && is_meta_closed ty + | C.Prod (name,so,dest) -> is_meta_closed so && is_meta_closed dest + | C.Lambda (_,so,dest) -> is_meta_closed so && is_meta_closed dest + | C.LetIn (_,so,ty,dest) -> + is_meta_closed so && + is_meta_closed ty && + is_meta_closed dest + | C.Appl l -> + not (List.exists (fun x -> not (is_meta_closed x)) l) + | C.Var (_,exp_named_subst) + | C.Const (_,exp_named_subst) + | C.MutInd (_,_,exp_named_subst) + | C.MutConstruct (_,_,_,exp_named_subst) -> + not (List.exists (fun (_,x) -> not (is_meta_closed x)) exp_named_subst) + | C.MutCase (_,_,out,te,pl) -> + is_meta_closed out && is_meta_closed te && + not (List.exists (fun x -> not (is_meta_closed x)) pl) + | C.Fix (_,fl) -> + not (List.exists + (fun (_,_,ty,bo) -> + not (is_meta_closed ty) || not (is_meta_closed bo)) + fl) + | C.CoFix (_,fl) -> + not (List.exists + (fun (_,ty,bo) -> + not (is_meta_closed ty) || not (is_meta_closed bo)) + fl) +;; + +let xpointer_RE = Str.regexp "\\([^#]+\\)#xpointer(\\(.*\\))" +let slash_RE = Str.regexp "/" + +let term_of_uri uri = + let s = UriManager.string_of_uri uri in + try + (if UriManager.uri_is_con uri then + C.Const (uri, []) + else if UriManager.uri_is_var uri then + C.Var (uri, []) + else if not (Str.string_match xpointer_RE s 0) then + raise (UriManager.IllFormedUri s) + else + let (baseuri,xpointer) = (Str.matched_group 1 s, Str.matched_group 2 s) in + let baseuri = UriManager.uri_of_string baseuri in + (match Str.split slash_RE xpointer with + | [_; tyno] -> C.MutInd (baseuri, int_of_string tyno - 1, []) + | [_; tyno; consno] -> + C.MutConstruct + (baseuri, int_of_string tyno - 1, int_of_string consno, []) + | _ -> raise Exit)) + with + | Exit + | Failure _ + | Not_found -> raise (UriManager.IllFormedUri s) + +let uri_of_term = function + | C.Const (uri, _) + | C.Var (uri, _) -> uri + | C.MutInd (baseuri, tyno, _) -> + UriManager.uri_of_string + (Printf.sprintf "%s#xpointer(1/%d)" (UriManager.string_of_uri baseuri) (tyno+1)) + | C.MutConstruct (baseuri, tyno, consno, _) -> + UriManager.uri_of_string + (Printf.sprintf "%s#xpointer(1/%d/%d)" (UriManager.string_of_uri baseuri) + (tyno + 1) consno) + | _ -> raise (Invalid_argument "uri_of_term") + + +(* +let pack terms = + List.fold_right + (fun term acc -> C.Prod (C.Anonymous, term, acc)) + terms (C.Sort (C.Type (CicUniv.fresh ()))) + +let rec unpack = function + | C.Prod (C.Anonymous, term, C.Sort (C.Type _)) -> [term] + | C.Prod (C.Anonymous, term, tgt) -> term :: unpack tgt + | _ -> assert false +*) + +let rec strip_prods n = function + | t when n = 0 -> t + | C.Prod (_, _, tgt) when n > 0 -> strip_prods (n-1) tgt + | _ -> failwith "not enough prods" + +let params_of_obj = function + | C.Constant (_, _, _, params, _) + | C.Variable (_, _, _, params, _) + | C.CurrentProof (_, _, _, _, params, _) + | C.InductiveDefinition (_, params, _, _) -> + params + +let attributes_of_obj = function + | C.Constant (_, _, _, _, attributes) + | C.Variable (_, _, _, _, attributes) + | C.CurrentProof (_, _, _, _, _, attributes) + | C.InductiveDefinition (_, _, _, attributes) -> + attributes + +let is_generated obj = List.exists ((=) `Generated) (attributes_of_obj obj) + +let arity_of_composed_coercion obj = + let attrs = attributes_of_obj obj in + try + let tag=List.find (function `Class (`Coercion _) -> true|_->false) attrs in + match tag with + | `Class (`Coercion n) -> n + | _-> assert false + with Not_found -> 0 +;; + +let projections_of_record obj uri = + let attrs = attributes_of_obj obj in + try + let tag=List.find (function `Class (`Record _) -> true|_->false) attrs in + match tag with + | `Class (`Record l) -> + List.map (fun (name,_,_) -> + let buri = UriManager.buri_of_uri uri in + let puri = UriManager.uri_of_string (buri ^ "/" ^ name ^ ".con") in + puri) l + | _-> assert false + with Not_found -> [] +;; + +let rec mk_rels howmany from = + match howmany with + | 0 -> [] + | _ -> (C.Rel (howmany + from)) :: (mk_rels (howmany-1) from) + +let id_of_annterm = + function + | C.ARel (id,_,_,_) + | C.AVar (id,_,_) + | C.AMeta (id,_,_) + | C.ASort (id,_) + | C.AImplicit (id,_) + | C.ACast (id,_,_) + | C.AProd (id,_,_,_) + | C.ALambda (id,_,_,_) + | C.ALetIn (id,_,_,_,_) + | C.AAppl (id,_) + | C.AConst (id,_,_) + | C.AMutInd (id,_,_,_) + | C.AMutConstruct (id,_,_,_,_) + | C.AMutCase (id,_,_,_,_,_) + | C.AFix (id,_,_) + | C.ACoFix (id,_,_) -> id + + +let rec rehash_term = + let module C = Cic in + let recons uri = UriManager.uri_of_string (UriManager.string_of_uri uri) in + function + | (C.Rel _) as t -> t + | C.Var (uri,exp_named_subst) -> + let uri' = recons uri in + let exp_named_subst' = + List.map + (function (uri,t) ->(recons uri,rehash_term t)) + exp_named_subst + in + C.Var (uri',exp_named_subst') + | C.Meta (i,l) -> + let l' = + List.map + (function + None -> None + | Some t -> Some (rehash_term t) + ) l + in + C.Meta(i,l') + | C.Sort (C.Type u) -> + CicUniv.assert_univ u; + C.Sort (C.Type (CicUniv.recons_univ u)) + | C.Sort _ as t -> t + | C.Implicit _ as t -> t + | C.Cast (te,ty) -> C.Cast (rehash_term te, rehash_term ty) + | C.Prod (n,s,t) -> C.Prod (n, rehash_term s, rehash_term t) + | C.Lambda (n,s,t) -> C.Lambda (n, rehash_term s, rehash_term t) + | C.LetIn (n,s,ty,t) -> + C.LetIn (n, rehash_term s, rehash_term ty, rehash_term t) + | C.Appl l -> C.Appl (List.map rehash_term l) + | C.Const (uri,exp_named_subst) -> + let uri' = recons uri in + let exp_named_subst' = + List.map + (function (uri,t) -> (recons uri,rehash_term t)) exp_named_subst + in + C.Const (uri',exp_named_subst') + | C.MutInd (uri,tyno,exp_named_subst) -> + let uri' = recons uri in + let exp_named_subst' = + List.map + (function (uri,t) -> (recons uri,rehash_term t)) exp_named_subst + in + C.MutInd (uri',tyno,exp_named_subst') + | C.MutConstruct (uri,tyno,consno,exp_named_subst) -> + let uri' = recons uri in + let exp_named_subst' = + List.map + (function (uri,t) -> (recons uri,rehash_term t)) exp_named_subst + in + C.MutConstruct (uri',tyno,consno,exp_named_subst') + | C.MutCase (uri,i,outty,t,pl) -> + C.MutCase (recons uri, i, rehash_term outty, rehash_term t, + List.map rehash_term pl) + | C.Fix (i, fl) -> + let liftedfl = + List.map + (fun (name, i, ty, bo) -> + (name, i, rehash_term ty, rehash_term bo)) + fl + in + C.Fix (i, liftedfl) + | C.CoFix (i, fl) -> + let liftedfl = + List.map + (fun (name, ty, bo) -> (name, rehash_term ty, rehash_term bo)) + fl + in + C.CoFix (i, liftedfl) + +let rehash_obj = + let module C = Cic in + let recons uri = UriManager.uri_of_string (UriManager.string_of_uri uri) in + function + C.Constant (name,bo,ty,params,attrs) -> + let bo' = + match bo with + None -> None + | Some bo -> Some (rehash_term bo) + in + let ty' = rehash_term ty in + let params' = List.map recons params in + C.Constant (name, bo', ty', params',attrs) + | C.CurrentProof (name,conjs,bo,ty,params,attrs) -> + let conjs' = + List.map + (function (i,hyps,ty) -> + (i, + List.map (function + None -> None + | Some (name,C.Decl t) -> + Some (name,C.Decl (rehash_term t)) + | Some (name,C.Def (bo,ty)) -> + Some (name,C.Def (rehash_term bo, rehash_term ty))) hyps, + rehash_term ty)) + conjs + in + let bo' = rehash_term bo in + let ty' = rehash_term ty in + let params' = List.map recons params in + C.CurrentProof (name, conjs', bo', ty', params',attrs) + | C.Variable (name,bo,ty,params,attrs) -> + let bo' = + match bo with + None -> None + | Some bo -> Some (rehash_term bo) + in + let ty' = rehash_term ty in + let params' = List.map recons params in + C.Variable (name, bo', ty', params',attrs) + | C.InductiveDefinition (tl,params,paramsno,attrs) -> + let params' = List.map recons params in + let tl' = + List.map (function (name, inductive, ty, constructors) -> + name, + inductive, + rehash_term ty, + (List.map + (function (name, ty) -> name, rehash_term ty) + constructors)) + tl + in + C.InductiveDefinition (tl', params', paramsno, attrs) + +let rec metas_of_term = function + | C.Meta (i, c) -> [i,c] + | C.Var (_, ens) + | C.Const (_, ens) + | C.MutInd (_, _, ens) + | C.MutConstruct (_, _, _, ens) -> + List.flatten (List.map (fun (u, t) -> metas_of_term t) ens) + | C.Cast (s, t) + | C.Prod (_, s, t) + | C.Lambda (_, s, t) -> (metas_of_term s) @ (metas_of_term t) + | C.LetIn (_, s, ty, t) -> + (metas_of_term s) @ (metas_of_term ty) @ (metas_of_term t) + | C.Appl l -> List.flatten (List.map metas_of_term l) + | C.MutCase (uri, i, s, t, l) -> + (metas_of_term s) @ (metas_of_term t) @ + (List.flatten (List.map metas_of_term l)) + | C.Fix (i, il) -> + List.flatten + (List.map (fun (s, i, t1, t2) -> + (metas_of_term t1) @ (metas_of_term t2)) il) + | C.CoFix (i, il) -> + List.flatten + (List.map (fun (s, t1, t2) -> + (metas_of_term t1) @ (metas_of_term t2)) il) + | _ -> [] +;; + +module MetaOT = struct + type t = int * C.term option list + let compare = Pervasives.compare +end + +module S = Set.Make(MetaOT) + +let rec metas_of_term_set = function + | C.Meta (i, c) -> S.singleton (i,c) + | C.Var (_, ens) + | C.Const (_, ens) + | C.MutInd (_, _, ens) + | C.MutConstruct (_, _, _, ens) -> + List.fold_left + (fun s (_,t) -> S.union s (metas_of_term_set t)) + S.empty ens + | C.Cast (s, t) + | C.Prod (_, s, t) + | C.Lambda (_, s, t) -> S.union (metas_of_term_set s) (metas_of_term_set t) + | C.LetIn (_, s, ty, t) -> + S.union (metas_of_term_set s) + (S.union (metas_of_term_set ty) (metas_of_term_set t)) + | C.Appl l -> + List.fold_left + (fun s t -> S.union s (metas_of_term_set t)) + S.empty l + | C.MutCase (uri, i, s, t, l) -> + S.union + (S.union (metas_of_term_set s) (metas_of_term_set t)) + (List.fold_left + (fun s t -> S.union s (metas_of_term_set t)) + S.empty l) + | C.Fix (_, il) -> + (List.fold_left + (fun s (_,_,t1,t2) -> + S.union s (S.union (metas_of_term_set t1) (metas_of_term_set t2)))) + S.empty il + | C.CoFix (i, il) -> + (List.fold_left + (fun s (_,t1,t2) -> + S.union s (S.union (metas_of_term_set t1) (metas_of_term_set t2)))) + S.empty il + | _ -> S.empty +;; + +let metas_of_term_set t = + let s = metas_of_term_set t in + S.elements s +;; + +(* syntactic_equality up to the *) +(* distinction between fake dependent products *) +(* and non-dependent products, alfa-conversion *) +let alpha_equivalence = + let rec aux t t' = + if t = t' then true + else + match t,t' with + C.Var (uri1,exp_named_subst1), C.Var (uri2,exp_named_subst2) -> + UriManager.eq uri1 uri2 && + aux_exp_named_subst exp_named_subst1 exp_named_subst2 + | C.Cast (te,ty), C.Cast (te',ty') -> + aux te te' && aux ty ty' + | C.Prod (_,s,t), C.Prod (_,s',t') -> + aux s s' && aux t t' + | C.Lambda (_,s,t), C.Lambda (_,s',t') -> + aux s s' && aux t t' + | C.LetIn (_,s,ty,t), C.LetIn(_,s',ty',t') -> + aux s s' && aux ty ty' && aux t t' + | C.Appl l, C.Appl l' when List.length l = List.length l' -> + (try + List.fold_left2 + (fun b t1 t2 -> b && aux t1 t2) true l l' + with + Invalid_argument _ -> false) + | C.Const (uri,exp_named_subst1), C.Const (uri',exp_named_subst2) -> + UriManager.eq uri uri' && + aux_exp_named_subst exp_named_subst1 exp_named_subst2 + | C.MutInd (uri,i,exp_named_subst1), C.MutInd (uri',i',exp_named_subst2) -> + UriManager.eq uri uri' && i = i' && + aux_exp_named_subst exp_named_subst1 exp_named_subst2 + | C.MutConstruct (uri,i,j,exp_named_subst1), + C.MutConstruct (uri',i',j',exp_named_subst2) -> + UriManager.eq uri uri' && i = i' && j = j' && + aux_exp_named_subst exp_named_subst1 exp_named_subst2 + | C.MutCase (sp,i,outt,t,pl), C.MutCase (sp',i',outt',t',pl') -> + UriManager.eq sp sp' && i = i' && + aux outt outt' && aux t t' && + (try + List.fold_left2 + (fun b t1 t2 -> b && aux t1 t2) true pl pl' + with + Invalid_argument _ -> false) + | C.Fix (i,fl), C.Fix (i',fl') -> + i = i' && + (try + List.fold_left2 + (fun b (_,i,ty,bo) (_,i',ty',bo') -> + b && i = i' && aux ty ty' && aux bo bo' + ) true fl fl' + with + Invalid_argument _ -> false) + | C.CoFix (i,fl), C.CoFix (i',fl') -> + i = i' && + (try + List.fold_left2 + (fun b (_,ty,bo) (_,ty',bo') -> + b && aux ty ty' && aux bo bo' + ) true fl fl' + with + Invalid_argument _ -> false) + | C.Meta (i, subst), C.Meta (i', subst') -> + i = i' && + (try + List.fold_left2 + (fun b xt xt' -> match xt,xt' with + | Some t, Some t' -> b && aux t t' + | _ -> b + ) true subst subst' + with + Invalid_argument _ -> false) + | C.Appl [t], t' | t, C.Appl [t'] -> assert false +(* FG: are we _really_ sure of these? + | C.Sort (C.Type u), C.Sort (C.Type u') -> u = u' + | C.Implicit a, C.Implicit a' -> a = a' + we insert an unused variable below to genarate a warning at compile time +*) + | _,_ -> false (* we already know that t != t' *) + and aux_exp_named_subst exp_named_subst1 exp_named_subst2 = + try + List.fold_left2 + (fun b (uri1,t1) (uri2,t2) -> + b && UriManager.eq uri1 uri2 && aux t1 t2 + ) true exp_named_subst1 exp_named_subst2 + with + Invalid_argument _ -> false + in + aux + +let is_sober t = + let rec sober_term g = function + | C.Rel _ + | C.Sort _ + | C.Implicit _ -> g + | C.Const (_, xnss) + | C.Var (_, xnss) + | C.MutConstruct (_, _, _, xnss) + | C.MutInd (_, _, xnss) -> sober_xnss g xnss + | C.Meta (_, xss) -> sober_xss g xss + | C.Lambda (_, v, t) + | C.Prod (_, v, t) + | C.Cast (t, v) -> sober_term (sober_term g t) v + | C.LetIn (_, v, ty, t) -> sober_term + (sober_term (sober_term g t) ty) v + | C.Appl [] + | C.Appl [_] -> fun b -> false + | C.Appl ts -> sober_terms g ts + | C.MutCase (_, _, t, v, ts) -> + sober_terms (sober_term (sober_term g t) v) ts + | C.Fix (_, ifs) -> sober_ifs g ifs + | C.CoFix (_, cifs) -> sober_cifs g cifs + and sober_terms g = List.fold_left sober_term g + and sober_xnss g = + let map g (_, t) = sober_term g t in + List.fold_left map g + and sober_xss g = + let map g = function + | None -> g + | Some t -> sober_term g t + in + List.fold_left map g + and sober_ifs g = + let map g (_, _, t, v) = sober_term (sober_term g t) v in + List.fold_left map g + and sober_cifs g = + let map g (_, t, v) = sober_term (sober_term g t) v in + List.fold_left map g + in + sober_term (fun b -> b) t true