X-Git-Url: http://matita.cs.unibo.it/gitweb/?p=helm.git;a=blobdiff_plain;f=components%2Fcic_proof_checking%2FcicReduction.ml;fp=components%2Fcic_proof_checking%2FcicReduction.ml;h=11fd5123560b1f411bd8a77832c30a6db7150f01;hp=0000000000000000000000000000000000000000;hb=f61af501fb4608cc4fb062a0864c774e677f0d76;hpb=58ae1809c352e71e7b5530dc41e2bfc834e1aef1 diff --git a/components/cic_proof_checking/cicReduction.ml b/components/cic_proof_checking/cicReduction.ml new file mode 100644 index 000000000..11fd51235 --- /dev/null +++ b/components/cic_proof_checking/cicReduction.ml @@ -0,0 +1,1262 @@ +(* Copyright (C) 2000, HELM Team. + * + * This file is part of HELM, an Hypertextual, Electronic + * Library of Mathematics, developed at the Computer Science + * Department, University of Bologna, Italy. + * + * HELM is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * as published by the Free Software Foundation; either version 2 + * of the License, or (at your option) any later version. + * + * HELM is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with HELM; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place - Suite 330, Boston, + * MA 02111-1307, USA. + * + * For details, see the HELM World-Wide-Web page, + * http://cs.unibo.it/helm/. + *) + +(* $Id$ *) + +(* TODO unify exceptions *) + +exception WrongUriToInductiveDefinition;; +exception Impossible of int;; +exception ReferenceToConstant;; +exception ReferenceToVariable;; +exception ReferenceToCurrentProof;; +exception ReferenceToInductiveDefinition;; + +let debug = false +let profile = false +let debug_print s = if debug then prerr_endline (Lazy.force s) + +let fdebug = ref 1;; +let debug t env s = + let rec debug_aux t i = + let module C = Cic in + let module U = UriManager in + CicPp.ppobj (C.Variable ("DEBUG", None, t, [], [])) ^ "\n" ^ i + in + if !fdebug = 0 then + debug_print (lazy (s ^ "\n" ^ List.fold_right debug_aux (t::env) "")) +;; + +module type Strategy = + sig + type stack_term + type env_term + type ens_term + type config = int * env_term list * ens_term Cic.explicit_named_substitution * Cic.term * stack_term list + val to_env : + reduce: (config -> config) -> + unwind: (config -> Cic.term) -> + config -> env_term + val to_ens : + reduce: (config -> config) -> + unwind: (config -> Cic.term) -> + config -> ens_term + val from_stack : stack_term -> config + val from_stack_list_for_unwind : + unwind: (config -> Cic.term) -> + stack_term list -> Cic.term list + val from_env : env_term -> config + val from_env_for_unwind : + unwind: (config -> Cic.term) -> + env_term -> Cic.term + val from_ens : ens_term -> config + val from_ens_for_unwind : + unwind: (config -> Cic.term) -> + ens_term -> Cic.term + val stack_to_env : + reduce: (config -> config) -> + unwind: (config -> Cic.term) -> + stack_term -> env_term + val compute_to_env : + reduce: (config -> config) -> + unwind: (config -> Cic.term) -> + int -> env_term list -> ens_term Cic.explicit_named_substitution -> + Cic.term -> env_term + val compute_to_stack : + reduce: (config -> config) -> + unwind: (config -> Cic.term) -> + config -> stack_term + end +;; + +module CallByValueByNameForUnwind = + struct + type config = int * env_term list * ens_term Cic.explicit_named_substitution * Cic.term * stack_term list + and stack_term = config + and env_term = config * config (* cbv, cbn *) + and ens_term = config * config (* cbv, cbn *) + + let to_env c = c,c + let to_ens c = c,c + let from_stack config = config + let from_stack_list_for_unwind ~unwind l = List.map unwind l + let from_env (c,_) = c + let from_ens (c,_) = c + let from_env_for_unwind ~unwind (_,c) = unwind c + let from_ens_for_unwind ~unwind (_,c) = unwind c + let stack_to_env ~reduce ~unwind config = reduce config, (0,[],[],unwind config,[]) + let compute_to_env ~reduce ~unwind k e ens t = (k,e,ens,t,[]), (k,e,ens,t,[]) + let compute_to_stack ~reduce ~unwind config = config + end +;; + +module CallByValueByNameForUnwind' = + struct + type config = int * env_term list * ens_term Cic.explicit_named_substitution * Cic.term * stack_term list + and stack_term = config lazy_t * Cic.term lazy_t (* cbv, cbn *) + and env_term = config lazy_t * Cic.term lazy_t (* cbv, cbn *) + and ens_term = config lazy_t * Cic.term lazy_t (* cbv, cbn *) + + let to_env ~reduce ~unwind c = lazy (reduce c),lazy (unwind c) + let to_ens ~reduce ~unwind c = lazy (reduce c),lazy (unwind c) + let from_stack (c,_) = Lazy.force c + let from_stack_list_for_unwind ~unwind l = List.map (function (_,c) -> Lazy.force c) l + let from_env (c,_) = Lazy.force c + let from_ens (c,_) = Lazy.force c + let from_env_for_unwind ~unwind (_,c) = Lazy.force c + let from_ens_for_unwind ~unwind (_,c) = Lazy.force c + let stack_to_env ~reduce ~unwind config = config + let compute_to_env ~reduce ~unwind k e ens t = + lazy (reduce (k,e,ens,t,[])), lazy (unwind (k,e,ens,t,[])) + let compute_to_stack ~reduce ~unwind config = lazy (reduce config), lazy (unwind config) + end +;; + + +(* Old Machine +module CallByNameStrategy = + struct + type stack_term = Cic.term + type env_term = Cic.term + type ens_term = Cic.term + type config = int * env_term list * ens_term Cic.explicit_named_substitution * Cic.term * stack_term list + let to_env v = v + let to_ens v = v + let from_stack ~unwind v = v + let from_stack_list ~unwind l = l + let from_env v = v + let from_ens v = v + let from_env_for_unwind ~unwind v = v + let from_ens_for_unwind ~unwind v = v + let stack_to_env ~reduce ~unwind v = v + let compute_to_stack ~reduce ~unwind k e ens t = unwind k e ens t + let compute_to_env ~reduce ~unwind k e ens t = unwind k e ens t + end +;; +*) + +module CallByNameStrategy = + struct + type config = int * env_term list * ens_term Cic.explicit_named_substitution * Cic.term * stack_term list + and stack_term = config + and env_term = config + and ens_term = config + + let to_env c = c + let to_ens c = c + let from_stack config = config + let from_stack_list_for_unwind ~unwind l = List.map unwind l + let from_env c = c + let from_ens c = c + let from_env_for_unwind ~unwind c = unwind c + let from_ens_for_unwind ~unwind c = unwind c + let stack_to_env ~reduce ~unwind config = 0,[],[],unwind config,[] + let compute_to_env ~reduce ~unwind k e ens t = k,e,ens,t,[] + let compute_to_stack ~reduce ~unwind config = config + end +;; + +module CallByValueStrategy = + struct + type stack_term = Cic.term + type env_term = Cic.term + type ens_term = Cic.term + type config = int * env_term list * ens_term Cic.explicit_named_substitution * Cic.term * stack_term list + let to_env v = v + let to_ens v = v + let from_stack ~unwind v = v + let from_stack_list ~unwind l = l + let from_env v = v + let from_ens v = v + let from_env_for_unwind ~unwind v = v + let from_ens_for_unwind ~unwind v = v + let stack_to_env ~reduce ~unwind v = v + let compute_to_stack ~reduce ~unwind k e ens t = reduce (k,e,ens,t,[]) + let compute_to_env ~reduce ~unwind k e ens t = reduce (k,e,ens,t,[]) + end +;; + +module CallByValueStrategyByNameOnConstants = + struct + type stack_term = Cic.term + type env_term = Cic.term + type ens_term = Cic.term + type config = int * env_term list * ens_term Cic.explicit_named_substitution * Cic.term * stack_term list + let to_env v = v + let to_ens v = v + let from_stack ~unwind v = v + let from_stack_list ~unwind l = l + let from_env v = v + let from_ens v = v + let from_env_for_unwind ~unwind v = v + let from_ens_for_unwind ~unwind v = v + let stack_to_env ~reduce ~unwind v = v + let compute_to_stack ~reduce ~unwind k e ens = + function + Cic.Const _ as t -> unwind k e ens t + | t -> reduce (k,e,ens,t,[]) + let compute_to_env ~reduce ~unwind k e ens = + function + Cic.Const _ as t -> unwind k e ens t + | t -> reduce (k,e,ens,t,[]) + end +;; + +module LazyCallByValueStrategy = + struct + type stack_term = Cic.term lazy_t + type env_term = Cic.term lazy_t + type ens_term = Cic.term lazy_t + type config = int * env_term list * ens_term Cic.explicit_named_substitution * Cic.term * stack_term list + let to_env v = lazy v + let to_ens v = lazy v + let from_stack ~unwind v = Lazy.force v + let from_stack_list ~unwind l = List.map (from_stack ~unwind) l + let from_env v = Lazy.force v + let from_ens v = Lazy.force v + let from_env_for_unwind ~unwind v = Lazy.force v + let from_ens_for_unwind ~unwind v = Lazy.force v + let stack_to_env ~reduce ~unwind v = v + let compute_to_stack ~reduce ~unwind k e ens t = lazy (reduce (k,e,ens,t,[])) + let compute_to_env ~reduce ~unwind k e ens t = lazy (reduce (k,e,ens,t,[])) + end +;; + +module LazyCallByValueStrategyByNameOnConstants = + struct + type stack_term = Cic.term lazy_t + type env_term = Cic.term lazy_t + type ens_term = Cic.term lazy_t + type config = int * env_term list * ens_term Cic.explicit_named_substitution * Cic.term * stack_term list + let to_env v = lazy v + let to_ens v = lazy v + let from_stack ~unwind v = Lazy.force v + let from_stack_list ~unwind l = List.map (from_stack ~unwind) l + let from_env v = Lazy.force v + let from_ens v = Lazy.force v + let from_env_for_unwind ~unwind v = Lazy.force v + let from_ens_for_unwind ~unwind v = Lazy.force v + let stack_to_env ~reduce ~unwind v = v + let compute_to_stack ~reduce ~unwind k e ens t = + lazy ( + match t with + Cic.Const _ as t -> unwind k e ens t + | t -> reduce (k,e,ens,t,[])) + let compute_to_env ~reduce ~unwind k e ens t = + lazy ( + match t with + Cic.Const _ as t -> unwind k e ens t + | t -> reduce (k,e,ens,t,[])) + end +;; + +module LazyCallByNameStrategy = + struct + type stack_term = Cic.term lazy_t + type env_term = Cic.term lazy_t + type ens_term = Cic.term lazy_t + type config = int * env_term list * ens_term Cic.explicit_named_substitution * Cic.term * stack_term list + let to_env v = lazy v + let to_ens v = lazy v + let from_stack ~unwind v = Lazy.force v + let from_stack_list ~unwind l = List.map (from_stack ~unwind) l + let from_env v = Lazy.force v + let from_ens v = Lazy.force v + let from_env_for_unwind ~unwind v = Lazy.force v + let from_ens_for_unwind ~unwind v = Lazy.force v + let stack_to_env ~reduce ~unwind v = v + let compute_to_stack ~reduce ~unwind k e ens t = lazy (unwind k e ens t) + let compute_to_env ~reduce ~unwind k e ens t = lazy (unwind k e ens t) + end +;; + +module + LazyCallByValueByNameOnConstantsWhenFromStack_ByNameStrategyWhenFromEnvOrEns += + struct + type stack_term = reduce:bool -> Cic.term + type env_term = reduce:bool -> Cic.term + type ens_term = reduce:bool -> Cic.term + type config = int * env_term list * ens_term Cic.explicit_named_substitution * Cic.term * stack_term list + let to_env v = + let value = lazy v in + fun ~reduce -> Lazy.force value + let to_ens v = + let value = lazy v in + fun ~reduce -> Lazy.force value + let from_stack ~unwind v = (v ~reduce:false) + let from_stack_list ~unwind l = List.map (from_stack ~unwind) l + let from_env v = (v ~reduce:true) + let from_ens v = (v ~reduce:true) + let from_env_for_unwind ~unwind v = (v ~reduce:true) + let from_ens_for_unwind ~unwind v = (v ~reduce:true) + let stack_to_env ~reduce ~unwind v = v + let compute_to_stack ~reduce ~unwind k e ens t = + let svalue = + lazy ( + match t with + Cic.Const _ as t -> unwind k e ens t + | t -> reduce (k,e,ens,t,[]) + ) in + let lvalue = + lazy (unwind k e ens t) + in + fun ~reduce -> + if reduce then Lazy.force svalue else Lazy.force lvalue + let compute_to_env ~reduce ~unwind k e ens t = + let svalue = + lazy ( + match t with + Cic.Const _ as t -> unwind k e ens t + | t -> reduce (k,e,ens,t,[]) + ) in + let lvalue = + lazy (unwind k e ens t) + in + fun ~reduce -> + if reduce then Lazy.force svalue else Lazy.force lvalue + end +;; + +module ClosuresOnStackByValueFromEnvOrEnsStrategy = + struct + type config = int * env_term list * ens_term Cic.explicit_named_substitution * Cic.term * stack_term list + and stack_term = config + and env_term = config + and ens_term = config + + let to_env config = config + let to_ens config = config + let from_stack config = config + let from_stack_list_for_unwind ~unwind l = List.map unwind l + let from_env v = v + let from_ens v = v + let from_env_for_unwind ~unwind config = unwind config + let from_ens_for_unwind ~unwind config = unwind config + let stack_to_env ~reduce ~unwind config = reduce config + let compute_to_env ~reduce ~unwind k e ens t = (k,e,ens,t,[]) + let compute_to_stack ~reduce ~unwind config = config + end +;; + +module ClosuresOnStackByValueFromEnvOrEnsByNameOnConstantsStrategy = + struct + type stack_term = + int * Cic.term list * Cic.term Cic.explicit_named_substitution * Cic.term + type env_term = Cic.term + type ens_term = Cic.term + type config = int * env_term list * ens_term Cic.explicit_named_substitution * Cic.term * stack_term list + let to_env v = v + let to_ens v = v + let from_stack ~unwind (k,e,ens,t) = unwind k e ens t + let from_stack_list ~unwind l = List.map (from_stack ~unwind) l + let from_env v = v + let from_ens v = v + let from_env_for_unwind ~unwind v = v + let from_ens_for_unwind ~unwind v = v + let stack_to_env ~reduce ~unwind (k,e,ens,t) = + match t with + Cic.Const _ as t -> unwind k e ens t + | t -> reduce (k,e,ens,t,[]) + let compute_to_env ~reduce ~unwind k e ens t = + unwind k e ens t + let compute_to_stack ~reduce ~unwind k e ens t = (k,e,ens,t) + end +;; + +module Reduction(RS : Strategy) = + struct + type env = RS.env_term list + type ens = RS.ens_term Cic.explicit_named_substitution + type stack = RS.stack_term list + type config = int * env * ens * Cic.term * stack + + (* k is the length of the environment e *) + (* m is the current depth inside the term *) + let rec unwind' m k e ens t = + let module C = Cic in + let module S = CicSubstitution in + if k = 0 && ens = [] then + t + else + let rec unwind_aux m = + function + C.Rel n as t -> + if n <= m then t else + let d = + try + Some (RS.from_env_for_unwind ~unwind (List.nth e (n-m-1))) + with Failure _ -> None + in + (match d with + Some t' -> + if m = 0 then t' else S.lift m t' + | None -> C.Rel (n-k) + ) + | C.Var (uri,exp_named_subst) -> +(* +debug_print (lazy ("%%%%%UWVAR " ^ String.concat " ; " (List.map (function (uri,t) -> UriManager.string_of_uri uri ^ " := " ^ CicPp.ppterm t) ens))) ; +*) + if List.exists (function (uri',_) -> UriManager.eq uri' uri) ens then + CicSubstitution.lift m (RS.from_ens_for_unwind ~unwind (List.assq uri ens)) + else + let params = + let o,_ = + CicEnvironment.get_cooked_obj CicUniv.empty_ugraph uri + in + (match o with + C.Constant _ -> raise ReferenceToConstant + | C.Variable (_,_,_,params,_) -> params + | C.CurrentProof _ -> raise ReferenceToCurrentProof + | C.InductiveDefinition _ -> raise ReferenceToInductiveDefinition + ) + in + let exp_named_subst' = + substaux_in_exp_named_subst params exp_named_subst m + in + C.Var (uri,exp_named_subst') + | C.Meta (i,l) -> + let l' = + List.map + (function + None -> None + | Some t -> Some (unwind_aux m t) + ) l + in + C.Meta (i, l') + | C.Sort _ as t -> t + | C.Implicit _ as t -> t + | C.Cast (te,ty) -> C.Cast (unwind_aux m te, unwind_aux m ty) (*CSC ???*) + | C.Prod (n,s,t) -> C.Prod (n, unwind_aux m s, unwind_aux (m + 1) t) + | C.Lambda (n,s,t) -> C.Lambda (n, unwind_aux m s, unwind_aux (m + 1) t) + | C.LetIn (n,s,ty,t) -> + C.LetIn (n, unwind_aux m s, unwind_aux m ty, unwind_aux (m + 1) t) + | C.Appl l -> C.Appl (List.map (unwind_aux m) l) + | C.Const (uri,exp_named_subst) -> + let params = + let o,_ = + CicEnvironment.get_cooked_obj CicUniv.empty_ugraph uri + in + (match o with + C.Constant (_,_,_,params,_) -> params + | C.Variable _ -> raise ReferenceToVariable + | C.CurrentProof (_,_,_,_,params,_) -> params + | C.InductiveDefinition _ -> raise ReferenceToInductiveDefinition + ) + in + let exp_named_subst' = + substaux_in_exp_named_subst params exp_named_subst m + in + C.Const (uri,exp_named_subst') + | C.MutInd (uri,i,exp_named_subst) -> + let params = + let o,_ = + CicEnvironment.get_cooked_obj CicUniv.empty_ugraph uri + in + (match o with + C.Constant _ -> raise ReferenceToConstant + | C.Variable _ -> raise ReferenceToVariable + | C.CurrentProof _ -> raise ReferenceToCurrentProof + | C.InductiveDefinition (_,params,_,_) -> params + ) + in + let exp_named_subst' = + substaux_in_exp_named_subst params exp_named_subst m + in + C.MutInd (uri,i,exp_named_subst') + | C.MutConstruct (uri,i,j,exp_named_subst) -> + let params = + let o,_ = + CicEnvironment.get_cooked_obj CicUniv.empty_ugraph uri + in + (match o with + C.Constant _ -> raise ReferenceToConstant + | C.Variable _ -> raise ReferenceToVariable + | C.CurrentProof _ -> raise ReferenceToCurrentProof + | C.InductiveDefinition (_,params,_,_) -> params + ) + in + let exp_named_subst' = + substaux_in_exp_named_subst params exp_named_subst m + in + C.MutConstruct (uri,i,j,exp_named_subst') + | C.MutCase (sp,i,outt,t,pl) -> + C.MutCase (sp,i,unwind_aux m outt, unwind_aux m t, + List.map (unwind_aux m) pl) + | C.Fix (i,fl) -> + let len = List.length fl in + let substitutedfl = + List.map + (fun (name,i,ty,bo) -> + (name, i, unwind_aux m ty, unwind_aux (m+len) bo)) + fl + in + C.Fix (i, substitutedfl) + | C.CoFix (i,fl) -> + let len = List.length fl in + let substitutedfl = + List.map + (fun (name,ty,bo) -> (name, unwind_aux m ty, unwind_aux (m+len) bo)) + fl + in + C.CoFix (i, substitutedfl) + and substaux_in_exp_named_subst params exp_named_subst' m = + (*CSC: Idea di Andrea di ordinare compatibilmente con l'ordine dei params + let ens' = + List.map (function (uri,t) -> uri, unwind_aux m t) exp_named_subst' @ + (*CSC: qui liftiamo tutti gli ens anche se magari me ne servono la meta'!!! *) + List.map (function (uri,t) -> uri, CicSubstitution.lift m t) ens + in + let rec filter_and_lift = + function + [] -> [] + | uri::tl -> + let r = filter_and_lift tl in + (try + (uri,(List.assq uri ens'))::r + with + Not_found -> r + ) + in + filter_and_lift params + *) + + (*CSC: invece di concatenare sarebbe meglio rispettare l'ordine dei params *) + (*CSC: e' vero???? una veloce prova non sembra confermare la teoria *) + + (*CSC: codice copiato e modificato dalla cicSubstitution.subst_vars *) + (*CSC: codice altamente inefficiente *) + let rec filter_and_lift already_instantiated = + function + [] -> [] + | (uri,t)::tl when + List.for_all + (function (uri',_)-> not (UriManager.eq uri uri')) exp_named_subst' + && + not (List.mem uri already_instantiated) + && + List.mem uri params + -> + (uri,CicSubstitution.lift m (RS.from_ens_for_unwind ~unwind t)) :: + (filter_and_lift (uri::already_instantiated) tl) + | _::tl -> filter_and_lift already_instantiated tl +(* + | (uri,_)::tl -> +debug_print (lazy ("---- SKIPPO " ^ UriManager.string_of_uri uri)) ; +if List.for_all (function (uri',_) -> not (UriManager.eq uri uri')) +exp_named_subst' then debug_print (lazy "---- OK1") ; +debug_print (lazy ("++++ uri " ^ UriManager.string_of_uri uri ^ " not in " ^ String.concat " ; " (List.map UriManager.string_of_uri params))) ; +if List.mem uri params then debug_print (lazy "---- OK2") ; + filter_and_lift tl +*) + in + List.map (function (uri,t) -> uri, unwind_aux m t) exp_named_subst' @ + (filter_and_lift [] (List.rev ens)) + in + unwind_aux m t + + and unwind (k,e,ens,t,s) = + let t' = unwind' 0 k e ens t in + if s = [] then t' else Cic.Appl (t'::(RS.from_stack_list_for_unwind ~unwind s)) + ;; + +(* + let unwind = + let profiler_unwind = HExtlib.profile ~enable:profile "are_convertible.unwind" in + fun k e ens t -> + profiler_unwind.HExtlib.profile (unwind k e ens) t + ;; +*) + + let reduce ~delta ?(subst = []) context : config -> config = + let module C = Cic in + let module S = CicSubstitution in + let rec reduce = + function + (k, e, _, C.Rel n, s) as config -> + let config' = + if not delta then None + else + try + Some (RS.from_env (List.nth e (n-1))) + with + Failure _ -> + try + begin + match List.nth context (n - 1 - k) with + None -> assert false + | Some (_,C.Decl _) -> None + | Some (_,C.Def (x,_)) -> Some (0,[],[],S.lift (n - k) x,[]) + end + with + Failure _ -> None + in + (match config' with + Some (k',e',ens',t',s') -> reduce (k',e',ens',t',s'@s) + | None -> config) + | (k, e, ens, C.Var (uri,exp_named_subst), s) as config -> + if List.exists (function (uri',_) -> UriManager.eq uri' uri) ens then + let (k',e',ens',t',s') = RS.from_ens (List.assq uri ens) in + reduce (k',e',ens',t',s'@s) + else + ( let o,_ = + CicEnvironment.get_cooked_obj CicUniv.empty_ugraph uri + in + match o with + C.Constant _ -> raise ReferenceToConstant + | C.CurrentProof _ -> raise ReferenceToCurrentProof + | C.InductiveDefinition _ -> raise ReferenceToInductiveDefinition + | C.Variable (_,None,_,_,_) -> config + | C.Variable (_,Some body,_,_,_) -> + let ens' = push_exp_named_subst k e ens exp_named_subst in + reduce (0, [], ens', body, s) + ) + | (k, e, ens, C.Meta (n,l), s) as config -> + (try + let (_, term,_) = CicUtil.lookup_subst n subst in + reduce (k, e, ens,CicSubstitution.subst_meta l term,s) + with CicUtil.Subst_not_found _ -> config) + | (_, _, _, C.Sort _, _) + | (_, _, _, C.Implicit _, _) as config -> config + | (k, e, ens, C.Cast (te,ty), s) -> + reduce (k, e, ens, te, s) + | (_, _, _, C.Prod _, _) as config -> config + | (_, _, _, C.Lambda _, []) as config -> config + | (k, e, ens, C.Lambda (_,_,t), p::s) -> + reduce (k+1, (RS.stack_to_env ~reduce ~unwind p)::e, ens, t,s) + | (k, e, ens, C.LetIn (_,m,_,t), s) -> + let m' = RS.compute_to_env ~reduce ~unwind k e ens m in + reduce (k+1, m'::e, ens, t, s) + | (_, _, _, C.Appl [], _) -> assert false + | (k, e, ens, C.Appl (he::tl), s) -> + let tl' = + List.map + (function t -> RS.compute_to_stack ~reduce ~unwind (k,e,ens,t,[])) tl + in + reduce (k, e, ens, he, (List.append tl') s) + | (_, _, _, C.Const _, _) as config when delta=false-> config + | (k, e, ens, C.Const (uri,exp_named_subst), s) as config -> + (let o,_ = + CicEnvironment.get_cooked_obj CicUniv.empty_ugraph uri + in + match o with + C.Constant (_,Some body,_,_,_) -> + let ens' = push_exp_named_subst k e ens exp_named_subst in + (* constants are closed *) + reduce (0, [], ens', body, s) + | C.Constant (_,None,_,_,_) -> config + | C.Variable _ -> raise ReferenceToVariable + | C.CurrentProof (_,_,body,_,_,_) -> + let ens' = push_exp_named_subst k e ens exp_named_subst in + (* constants are closed *) + reduce (0, [], ens', body, s) + | C.InductiveDefinition _ -> raise ReferenceToInductiveDefinition + ) + | (_, _, _, C.MutInd _, _) + | (_, _, _, C.MutConstruct _, _) as config -> config + | (k, e, ens, C.MutCase (mutind,i,outty,term,pl),s) as config -> + let decofix = + function + (k, e, ens, C.CoFix (i,fl), s) -> + let (_,_,body) = List.nth fl i in + let body' = + let counter = ref (List.length fl) in + List.fold_right + (fun _ -> decr counter ; S.subst (C.CoFix (!counter,fl))) + fl + body + in + reduce (k,e,ens,body',s) + | config -> config + in + (match decofix (reduce (k,e,ens,term,[])) with + (k', e', ens', C.MutConstruct (_,_,j,_), []) -> + reduce (k, e, ens, (List.nth pl (j-1)), s) + | (k', e', ens', C.MutConstruct (_,_,j,_), s') -> + let r = + let o,_ = + CicEnvironment.get_cooked_obj CicUniv.empty_ugraph mutind + in + match o with + C.InductiveDefinition (_,_,r,_) -> r + | _ -> raise WrongUriToInductiveDefinition + in + let ts = + let num_to_eat = r in + let rec eat_first = + function + (0,l) -> l + | (n,he::s) when n > 0 -> eat_first (n - 1, s) + | _ -> raise (Impossible 5) + in + eat_first (num_to_eat,s') + in + reduce (k, e, ens, (List.nth pl (j-1)), ts@s) + | (_, _, _, C.Cast _, _) + | (_, _, _, C.Implicit _, _) -> + raise (Impossible 2) (* we don't trust our whd ;-) *) + | config' -> + (*CSC: here I am unwinding the configuration and for sure I + will do it twice; to avoid this unwinding I should push the + "match [] with _" continuation on the stack; + another possibility is to just return the original configuration, + partially undoing the weak-head computation *) + (*this code is uncorrect since term' lives in e' <> e + let term' = unwind config' in + (k, e, ens, C.MutCase (mutind,i,outty,term',pl),s) + *) + config) + | (k, e, ens, C.Fix (i,fl), s) as config -> + let (_,recindex,_,body) = List.nth fl i in + let recparam = + try + Some (RS.from_stack (List.nth s recindex)) + with + Failure _ -> None + in + (match recparam with + Some recparam -> + (match reduce recparam with + (_,_,_,C.MutConstruct _,_) as config -> + let leng = List.length fl in + let new_env = + let counter = ref 0 in + let rec build_env e' = + if !counter = leng then e' + else + (incr counter ; + build_env + ((RS.to_env ~reduce ~unwind (k,e,ens,C.Fix (!counter -1, fl),[]))::e')) + in + build_env e + in + let rec replace i s t = + match i,s with + 0,_::tl -> t::tl + | n,he::tl -> he::(replace (n - 1) tl t) + | _,_ -> assert false in + let new_s = + replace recindex s (RS.compute_to_stack ~reduce ~unwind config) + in + reduce (k+leng, new_env, ens, body, new_s) + | _ -> config) + | None -> config + ) + | (_,_,_,C.CoFix _,_) as config -> config + and push_exp_named_subst k e ens = + function + [] -> ens + | (uri,t)::tl -> + push_exp_named_subst k e ((uri,RS.to_ens ~reduce ~unwind (k,e,ens,t,[]))::ens) tl + in + reduce + ;; + + let whd ?(delta=true) ?(subst=[]) context t = + unwind (reduce ~delta ~subst context (0, [], [], t, [])) + ;; + + end +;; + + +(* ROTTO = rompe l'unificazione poiche' riduce gli argomenti di un'applicazione + senza ridurre la testa +module R = Reduction CallByNameStrategy;; OK 56.368s +module R = Reduction CallByValueStrategy;; ROTTO +module R = Reduction CallByValueStrategyByNameOnConstants;; ROTTO +module R = Reduction LazyCallByValueStrategy;; ROTTO +module R = Reduction LazyCallByValueStrategyByNameOnConstants;; ROTTO +module R = Reduction LazyCallByNameStrategy;; OK 0m56.398s +module R = Reduction + LazyCallByValueByNameOnConstantsWhenFromStack_ByNameStrategyWhenFromEnvOrEns;; + OK 59.058s +module R = Reduction ClosuresOnStackByValueFromEnvOrEnsStrategy;; OK 58.583s +module R = Reduction + ClosuresOnStackByValueFromEnvOrEnsByNameOnConstantsStrategy;; OK 58.094s +module R = Reduction(ClosuresOnStackByValueFromEnvOrEnsStrategy);; OK 58.127s +*) +(*module R = Reduction(CallByValueByNameForUnwind);;*) +module RS = CallByValueByNameForUnwind';; +(*module R = Reduction(CallByNameStrategy);;*) +(*module R = Reduction(ClosuresOnStackByValueFromEnvOrEnsStrategy);;*) +module R = Reduction(RS);; +module U = UriManager;; + +let whd = R.whd + +(* +let whd = + let profiler_whd = HExtlib.profile ~enable:profile "are_convertible.whd" in + fun ?(delta=true) ?(subst=[]) context t -> + profiler_whd.HExtlib.profile (whd ~delta ~subst context) t +*) + + (* mimic ocaml (<< 3.08) "=" behaviour. Tests physical equality first then + * fallbacks to structural equality *) +let (===) x y = + Pervasives.compare x y = 0 + +(* t1, t2 must be well-typed *) +let are_convertible whd ?(subst=[]) ?(metasenv=[]) = + let heuristic = ref true in + let rec aux test_equality_only context t1 t2 ugraph = + let rec aux2 test_equality_only t1 t2 ugraph = + + (* this trivial euristic cuts down the total time of about five times ;-) *) + (* this because most of the time t1 and t2 are "sintactically" the same *) + if t1 === t2 then + true,ugraph + else + begin + let module C = Cic in + match (t1,t2) with + (C.Rel n1, C.Rel n2) -> (n1 = n2),ugraph + | (C.Var (uri1,exp_named_subst1), C.Var (uri2,exp_named_subst2)) -> + if U.eq uri1 uri2 then + (try + List.fold_right2 + (fun (uri1,x) (uri2,y) (b,ugraph) -> + let b',ugraph' = aux test_equality_only context x y ugraph in + (U.eq uri1 uri2 && b' && b),ugraph' + ) exp_named_subst1 exp_named_subst2 (true,ugraph) + with + Invalid_argument _ -> false,ugraph + ) + else + false,ugraph + | (C.Meta (n1,l1), C.Meta (n2,l2)) -> + if n1 = n2 then + let b2, ugraph1 = + let l1 = CicUtil.clean_up_local_context subst metasenv n1 l1 in + let l2 = CicUtil.clean_up_local_context subst metasenv n2 l2 in + List.fold_left2 + (fun (b,ugraph) t1 t2 -> + if b then + match t1,t2 with + None,_ + | _,None -> true,ugraph + | Some t1',Some t2' -> + aux test_equality_only context t1' t2' ugraph + else + false,ugraph + ) (true,ugraph) l1 l2 + in + if b2 then true,ugraph1 else false,ugraph + else + false,ugraph + | C.Meta (n1,l1), _ -> + (try + let _,term,_ = CicUtil.lookup_subst n1 subst in + let term' = CicSubstitution.subst_meta l1 term in +(* +prerr_endline ("%?: " ^ CicPp.ppterm t1 ^ " <==> " ^ CicPp.ppterm t2); +prerr_endline ("%%%%%%: " ^ CicPp.ppterm term' ^ " <==> " ^ CicPp.ppterm t2); +*) + aux test_equality_only context term' t2 ugraph + with CicUtil.Subst_not_found _ -> false,ugraph) + | _, C.Meta (n2,l2) -> + (try + let _,term,_ = CicUtil.lookup_subst n2 subst in + let term' = CicSubstitution.subst_meta l2 term in +(* +prerr_endline ("%?: " ^ CicPp.ppterm t1 ^ " <==> " ^ CicPp.ppterm t2); +prerr_endline ("%%%%%%: " ^ CicPp.ppterm term' ^ " <==> " ^ CicPp.ppterm t1); +*) + aux test_equality_only context t1 term' ugraph + with CicUtil.Subst_not_found _ -> false,ugraph) + (* TASSI: CONSTRAINTS *) + | (C.Sort (C.Type t1), C.Sort (C.Type t2)) when test_equality_only -> + (try + true,(CicUniv.add_eq t2 t1 ugraph) + with CicUniv.UniverseInconsistency _ -> false,ugraph) + (* TASSI: CONSTRAINTS *) + | (C.Sort (C.Type t1), C.Sort (C.Type t2)) -> + (try + true,(CicUniv.add_ge t2 t1 ugraph) + with CicUniv.UniverseInconsistency _ -> false,ugraph) + (* TASSI: CONSTRAINTS *) + | (C.Sort s1, C.Sort (C.Type _)) -> (not test_equality_only),ugraph + (* TASSI: CONSTRAINTS *) + | (C.Sort s1, C.Sort s2) -> (s1 = s2),ugraph + | (C.Prod (name1,s1,t1), C.Prod(_,s2,t2)) -> + let b',ugraph' = aux true context s1 s2 ugraph in + if b' then + aux test_equality_only ((Some (name1, (C.Decl s1)))::context) + t1 t2 ugraph' + else + false,ugraph + | (C.Lambda (name1,s1,t1), C.Lambda(_,s2,t2)) -> + let b',ugraph' = aux true context s1 s2 ugraph in + if b' then + aux test_equality_only ((Some (name1, (C.Decl s1)))::context) + t1 t2 ugraph' + else + false,ugraph + | (C.LetIn (name1,s1,ty1,t1), C.LetIn(_,s2,ty2,t2)) -> + let b',ugraph' = aux test_equality_only context s1 s2 ugraph in + if b' then + let b',ugraph = aux test_equality_only context ty1 ty2 ugraph in + if b' then + aux test_equality_only + ((Some (name1, (C.Def (s1,ty1))))::context) t1 t2 ugraph' + else + false,ugraph + else + false,ugraph + | (C.Appl l1, C.Appl l2) -> + (try + List.fold_right2 + (fun x y (b,ugraph) -> + if b then + aux test_equality_only context x y ugraph + else + false,ugraph) l1 l2 (true,ugraph) + with + Invalid_argument _ -> false,ugraph + ) + | (C.Const (uri1,exp_named_subst1), C.Const (uri2,exp_named_subst2)) -> + let b' = U.eq uri1 uri2 in + if b' then + (try + List.fold_right2 + (fun (uri1,x) (uri2,y) (b,ugraph) -> + if b && U.eq uri1 uri2 then + aux test_equality_only context x y ugraph + else + false,ugraph + ) exp_named_subst1 exp_named_subst2 (true,ugraph) + with + Invalid_argument _ -> false,ugraph + ) + else + false,ugraph + | (C.MutInd (uri1,i1,exp_named_subst1), + C.MutInd (uri2,i2,exp_named_subst2) + ) -> + let b' = U.eq uri1 uri2 && i1 = i2 in + if b' then + (try + List.fold_right2 + (fun (uri1,x) (uri2,y) (b,ugraph) -> + if b && U.eq uri1 uri2 then + aux test_equality_only context x y ugraph + else + false,ugraph + ) exp_named_subst1 exp_named_subst2 (true,ugraph) + with + Invalid_argument _ -> false,ugraph + ) + else + false,ugraph + | (C.MutConstruct (uri1,i1,j1,exp_named_subst1), + C.MutConstruct (uri2,i2,j2,exp_named_subst2) + ) -> + let b' = U.eq uri1 uri2 && i1 = i2 && j1 = j2 in + if b' then + (try + List.fold_right2 + (fun (uri1,x) (uri2,y) (b,ugraph) -> + if b && U.eq uri1 uri2 then + aux test_equality_only context x y ugraph + else + false,ugraph + ) exp_named_subst1 exp_named_subst2 (true,ugraph) + with + Invalid_argument _ -> false,ugraph + ) + else + false,ugraph + | (C.MutCase (uri1,i1,outtype1,term1,pl1), + C.MutCase (uri2,i2,outtype2,term2,pl2)) -> + let b' = U.eq uri1 uri2 && i1 = i2 in + if b' then + let b'',ugraph''=aux test_equality_only context + outtype1 outtype2 ugraph in + if b'' then + let b''',ugraph'''= aux test_equality_only context + term1 term2 ugraph'' in + List.fold_right2 + (fun x y (b,ugraph) -> + if b then + aux test_equality_only context x y ugraph + else + false,ugraph) + pl1 pl2 (b''',ugraph''') + else + false,ugraph + else + false,ugraph + | (C.Fix (i1,fl1), C.Fix (i2,fl2)) -> + let tys,_ = + List.fold_left + (fun (types,len) (n,_,ty,_) -> + (Some (C.Name n,(C.Decl (CicSubstitution.lift len ty)))::types, + len+1) + ) ([],0) fl1 + in + if i1 = i2 then + List.fold_right2 + (fun (_,recindex1,ty1,bo1) (_,recindex2,ty2,bo2) (b,ugraph) -> + if b && recindex1 = recindex2 then + let b',ugraph' = aux test_equality_only context ty1 ty2 + ugraph in + if b' then + aux test_equality_only (tys@context) bo1 bo2 ugraph' + else + false,ugraph + else + false,ugraph) + fl1 fl2 (true,ugraph) + else + false,ugraph + | (C.CoFix (i1,fl1), C.CoFix (i2,fl2)) -> + let tys,_ = + List.fold_left + (fun (types,len) (n,ty,_) -> + (Some (C.Name n,(C.Decl (CicSubstitution.lift len ty)))::types, + len+1) + ) ([],0) fl1 + in + if i1 = i2 then + List.fold_right2 + (fun (_,ty1,bo1) (_,ty2,bo2) (b,ugraph) -> + if b then + let b',ugraph' = aux test_equality_only context ty1 ty2 + ugraph in + if b' then + aux test_equality_only (tys@context) bo1 bo2 ugraph' + else + false,ugraph + else + false,ugraph) + fl1 fl2 (true,ugraph) + else + false,ugraph + | C.Cast (bo,_),t -> aux2 test_equality_only bo t ugraph + | t,C.Cast (bo,_) -> aux2 test_equality_only t bo ugraph + | (C.Implicit _, _) | (_, C.Implicit _) -> assert false + | (_,_) -> false,ugraph + end + in + let res = + if !heuristic then + aux2 test_equality_only t1 t2 ugraph + else + false,ugraph + in + if fst res = true then + res + else +begin +(*if !heuristic then prerr_endline ("NON FACILE: " ^ CicPp.ppterm t1 ^ " <===> " ^ CicPp.ppterm t2);*) + (* heuristic := false; *) + debug t1 [t2] "PREWHD"; +(*prerr_endline ("PREWHD: " ^ CicPp.ppterm t1 ^ " <===> " ^ CicPp.ppterm t2);*) +(* +prerr_endline ("PREWHD: " ^ CicPp.ppterm t1 ^ " <===> " ^ CicPp.ppterm t2); + let t1' = whd ?delta:(Some true) ?subst:(Some subst) context t1 in + let t2' = whd ?delta:(Some true) ?subst:(Some subst) context t2 in + debug t1' [t2'] "POSTWHD"; +*) +let rec convert_machines ugraph = + function + [] -> true,ugraph + | ((k1,env1,ens1,h1,s1),(k2,env2,ens2,h2,s2))::tl -> + let (b,ugraph) as res = + aux2 test_equality_only + (R.unwind (k1,env1,ens1,h1,[])) (R.unwind (k2,env2,ens2,h2,[])) ugraph + in + if b then + let problems = + try + Some + (List.combine + (List.map + (fun si-> R.reduce ~delta:false ~subst context(RS.from_stack si)) + s1) + (List.map + (fun si-> R.reduce ~delta:false ~subst context(RS.from_stack si)) + s2) + @ tl) + with + Invalid_argument _ -> None + in + match problems with + None -> false,ugraph + | Some problems -> convert_machines ugraph problems + else + res +in + convert_machines ugraph + [R.reduce ~delta:true ~subst context (0,[],[],t1,[]), + R.reduce ~delta:true ~subst context (0,[],[],t2,[])] +(*prerr_endline ("POSTWH: " ^ CicPp.ppterm t1' ^ " <===> " ^ CicPp.ppterm t2');*) +(* + aux2 test_equality_only t1' t2' ugraph +*) +end + in + aux false (*c t1 t2 ugraph *) +;; + +(* DEBUGGING ONLY +let whd ?(delta=true) ?(subst=[]) context t = + let res = whd ~delta ~subst context t in + let rescsc = CicReductionNaif.whd ~delta ~subst context t in + if not (fst (are_convertible CicReductionNaif.whd ~subst context res rescsc CicUniv.empty_ugraph)) then + begin + debug_print (lazy ("PRIMA: " ^ CicPp.ppterm t)) ; + flush stderr ; + debug_print (lazy ("DOPO: " ^ CicPp.ppterm res)) ; + flush stderr ; + debug_print (lazy ("CSC: " ^ CicPp.ppterm rescsc)) ; + flush stderr ; +fdebug := 0 ; +let _ = are_convertible CicReductionNaif.whd ~subst context res rescsc CicUniv.empty_ugraph in + assert false ; + end + else + res +;; +*) + +let are_convertible = are_convertible whd + +let whd = R.whd + +(* +let profiler_other_whd = HExtlib.profile ~enable:profile "~are_convertible.whd" +let whd ?(delta=true) ?(subst=[]) context t = + let foo () = + whd ~delta ~subst context t + in + profiler_other_whd.HExtlib.profile foo () +*) + +let rec normalize ?(delta=true) ?(subst=[]) ctx term = + let module C = Cic in + let t = whd ~delta ~subst ctx term in + let aux = normalize ~delta ~subst in + let decl name t = Some (name, C.Decl t) in + match t with + | C.Rel n -> t + | C.Var (uri,exp_named_subst) -> + C.Var (uri, List.map (fun (n,t) -> n,aux ctx t) exp_named_subst) + | C.Meta (i,l) -> + C.Meta (i,List.map (function Some t -> Some (aux ctx t) | None -> None) l) + | C.Sort _ -> t + | C.Implicit _ -> t + | C.Cast (te,ty) -> C.Cast (aux ctx te, aux ctx ty) + | C.Prod (n,s,t) -> + let s' = aux ctx s in + C.Prod (n, s', aux ((decl n s')::ctx) t) + | C.Lambda (n,s,t) -> + let s' = aux ctx s in + C.Lambda (n, s', aux ((decl n s')::ctx) t) + | C.LetIn (n,s,_,t) -> + (* the term is already in weak head normal form *) + assert false + | C.Appl (h::l) -> C.Appl (h::(List.map (aux ctx) l)) + | C.Appl [] -> assert false + | C.Const (uri,exp_named_subst) -> + C.Const (uri, List.map (fun (n,t) -> n,aux ctx t) exp_named_subst) + | C.MutInd (uri,typeno,exp_named_subst) -> + C.MutInd (uri,typeno, List.map (fun (n,t) -> n,aux ctx t) exp_named_subst) + | C.MutConstruct (uri,typeno,consno,exp_named_subst) -> + C.MutConstruct (uri, typeno, consno, + List.map (fun (n,t) -> n,aux ctx t) exp_named_subst) + | C.MutCase (sp,i,outt,t,pl) -> + C.MutCase (sp,i, aux ctx outt, aux ctx t, List.map (aux ctx) pl) +(*CSC: to be completed, I suppose *) + | C.Fix _ -> t + | C.CoFix _ -> t + +let normalize ?delta ?subst ctx term = +(* prerr_endline ("NORMALIZE:" ^ CicPp.ppterm term); *) + let t = normalize ?delta ?subst ctx term in +(* prerr_endline ("NORMALIZED:" ^ CicPp.ppterm t); *) + t + + +(* performs an head beta/cast reduction *) +let rec head_beta_reduce ?(delta=false) ?(upto=(-1)) t = + match upto with + 0 -> t + | n -> + match t with + (Cic.Appl (Cic.Lambda (_,_,t)::he'::tl')) -> + let he'' = CicSubstitution.subst he' t in + if tl' = [] then + he'' + else + let he''' = + match he'' with + Cic.Appl l -> Cic.Appl (l@tl') + | _ -> Cic.Appl (he''::tl') + in + head_beta_reduce ~delta ~upto:(upto - 1) he''' + | Cic.Cast (te,_) -> head_beta_reduce ~delta ~upto te + | Cic.Appl (Cic.Const (uri,ens)::tl) as t when delta=true -> + let bo = + match fst (CicEnvironment.get_cooked_obj CicUniv.empty_ugraph uri) with + Cic.Constant (_,bo,_,_,_) -> bo + | Cic.Variable _ -> raise ReferenceToVariable + | Cic.CurrentProof (_,_,bo,_,_,_) -> Some bo + | Cic.InductiveDefinition _ -> raise ReferenceToInductiveDefinition + in + (match bo with + None -> t + | Some bo -> + head_beta_reduce ~upto + ~delta (Cic.Appl ((CicSubstitution.subst_vars ens bo)::tl))) + | Cic.Const (uri,ens) as t when delta=true -> + let bo = + match fst (CicEnvironment.get_cooked_obj CicUniv.empty_ugraph uri) with + Cic.Constant (_,bo,_,_,_) -> bo + | Cic.Variable _ -> raise ReferenceToVariable + | Cic.CurrentProof (_,_,bo,_,_,_) -> Some bo + | Cic.InductiveDefinition _ -> raise ReferenceToInductiveDefinition + in + (match bo with + None -> t + | Some bo -> + head_beta_reduce ~delta ~upto (CicSubstitution.subst_vars ens bo)) + | t -> t + +(* +let are_convertible ?subst ?metasenv context t1 t2 ugraph = + let before = Unix.gettimeofday () in + let res = are_convertible ?subst ?metasenv context t1 t2 ugraph in + let after = Unix.gettimeofday () in + let diff = after -. before in + if diff > 0.1 then + begin + let nc = List.map (function None -> None | Some (n,_) -> Some n) context in + prerr_endline + ("\n#(" ^ string_of_float diff ^ "):\n" ^ CicPp.pp t1 nc ^ "\n<=>\n" ^ CicPp.pp t2 nc); + end; + res +*)