X-Git-Url: http://matita.cs.unibo.it/gitweb/?p=helm.git;a=blobdiff_plain;f=components%2Ftactics%2FproofEngineHelpers.ml;fp=components%2Ftactics%2FproofEngineHelpers.ml;h=7d223a4437b4d9fe232032315b9ec8c933a17a6a;hp=0000000000000000000000000000000000000000;hb=f61af501fb4608cc4fb062a0864c774e677f0d76;hpb=58ae1809c352e71e7b5530dc41e2bfc834e1aef1 diff --git a/components/tactics/proofEngineHelpers.ml b/components/tactics/proofEngineHelpers.ml new file mode 100644 index 000000000..7d223a443 --- /dev/null +++ b/components/tactics/proofEngineHelpers.ml @@ -0,0 +1,704 @@ +(* Copyright (C) 2002, HELM Team. + * + * This file is part of HELM, an Hypertextual, Electronic + * Library of Mathematics, developed at the Computer Science + * Department, University of Bologna, Italy. + * + * HELM is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * as published by the Free Software Foundation; either version 2 + * of the License, or (at your option) any later version. + * + * HELM is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with HELM; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place - Suite 330, Boston, + * MA 02111-1307, USA. + * + * For details, see the HELM World-Wide-Web page, + * http://cs.unibo.it/helm/. + *) + +(* $Id$ *) + +exception Bad_pattern of string Lazy.t + +let new_meta_of_proof ~proof:(_, metasenv, _, _, _, _) = + CicMkImplicit.new_meta metasenv [] + +let subst_meta_in_proof proof meta term newmetasenv = + let uri,metasenv,initial_subst,bo,ty, attrs = proof in + (* empty context is ok for term since it wont be used by apply_subst *) + (* hack: since we do not know the context and the type of term, we + create a substitution with cc =[] and type = Implicit; they will be + in any case dropped by apply_subst, but it would be better to rewrite + the code. Cannot we just use apply_subst_metasenv, etc. ?? *) + let subst_in = CicMetaSubst.apply_subst [meta,([], term,Cic.Implicit None)] in + let metasenv' = + newmetasenv @ (List.filter (function (m,_,_) -> m <> meta) metasenv) + in + let metasenv'' = + List.map + (function i,canonical_context,ty -> + let canonical_context' = + List.map + (function + Some (n,Cic.Decl s) -> Some (n,Cic.Decl (subst_in s)) + | None -> None + | Some (n,Cic.Def (bo,ty)) -> + Some (n,Cic.Def (subst_in bo,subst_in ty)) + ) canonical_context + in + i,canonical_context',(subst_in ty) + ) metasenv' + in + let bo' = subst_in bo in + (* Metavariables can appear also in the *statement* of the theorem + * since the parser does not reject as statements terms with + * metavariable therein *) + let ty' = subst_in ty in + let newproof = uri,metasenv'',initial_subst,bo',ty', attrs in + (newproof, metasenv'') + +(*CSC: commento vecchio *) +(* refine_meta_with_brand_new_metasenv meta term subst_in newmetasenv *) +(* This (heavy) function must be called when a tactic can instantiate old *) +(* metavariables (i.e. existential variables). It substitues the metasenv *) +(* of the proof with the result of removing [meta] from the domain of *) +(* [newmetasenv]. Then it replaces Cic.Meta [meta] with [term] everywhere *) +(* in the current proof. Finally it applies [apply_subst_replacing] to *) +(* current proof. *) +(*CSC: A questo punto perche' passare un bo' gia' istantiato, se tanto poi *) +(*CSC: ci ripasso sopra apply_subst!!! *) +(*CSC: Attenzione! Ora questa funzione applica anche [subst_in] a *) +(*CSC: [newmetasenv]. *) +let subst_meta_and_metasenv_in_proof proof meta subst newmetasenv = + let (uri,_,initial_subst,bo,ty, attrs) = proof in + let subst_in = CicMetaSubst.apply_subst subst in + let bo' = subst_in bo in + (* Metavariables can appear also in the *statement* of the theorem + * since the parser does not reject as statements terms with + * metavariable therein *) + let ty' = subst_in ty in + let metasenv' = + List.fold_right + (fun metasenv_entry i -> + match metasenv_entry with + (m,canonical_context,ty) when m <> meta -> + let canonical_context' = + List.map + (function + None -> None + | Some (i,Cic.Decl t) -> Some (i,Cic.Decl (subst_in t)) + | Some (i,Cic.Def (bo,ty)) -> + Some (i,Cic.Def (subst_in bo,subst_in ty)) + ) canonical_context + in + (m,canonical_context',subst_in ty)::i + | _ -> i + ) newmetasenv [] + in + (* qui da capire se per la fase transitoria si fa initial_subst @ subst + * oppure subst *) + let newproof = uri,metasenv',subst,bo',ty', attrs in + (newproof, metasenv') + +let compare_metasenvs ~oldmetasenv ~newmetasenv = + List.map (function (i,_,_) -> i) + (List.filter + (function (i,_,_) -> + not (List.exists (fun (j,_,_) -> i=j) oldmetasenv)) newmetasenv) +;; + +(** finds the _pointers_ to subterms that are alpha-equivalent to wanted in t *) +let find_subterms ~subst ~metasenv ~ugraph ~wanted ~context t = + let rec find subst metasenv ugraph context w t = + try + let subst,metasenv,ugraph = + CicUnification.fo_unif_subst subst context metasenv w t ugraph + in + subst,metasenv,ugraph,[context,t] + with + CicUnification.UnificationFailure _ + | CicUnification.Uncertain _ -> + match t with + | Cic.Sort _ + | Cic.Rel _ -> subst,metasenv,ugraph,[] + | Cic.Meta (_, ctx) -> + List.fold_left ( + fun (subst,metasenv,ugraph,acc) e -> + match e with + | None -> subst,metasenv,ugraph,acc + | Some t -> + let subst,metasenv,ugraph,res = + find subst metasenv ugraph context w t + in + subst,metasenv,ugraph, res @ acc + ) (subst,metasenv,ugraph,[]) ctx + | Cic.Lambda (name, t1, t2) + | Cic.Prod (name, t1, t2) -> + let subst,metasenv,ugraph,rest1 = + find subst metasenv ugraph context w t1 in + let subst,metasenv,ugraph,rest2 = + find subst metasenv ugraph (Some (name, Cic.Decl t1)::context) + (CicSubstitution.lift 1 w) t2 + in + subst,metasenv,ugraph,rest1 @ rest2 + | Cic.LetIn (name, t1, t2, t3) -> + let subst,metasenv,ugraph,rest1 = + find subst metasenv ugraph context w t1 in + let subst,metasenv,ugraph,rest2 = + find subst metasenv ugraph context w t2 in + let subst,metasenv,ugraph,rest3 = + find subst metasenv ugraph (Some (name, Cic.Def (t1,t2))::context) + (CicSubstitution.lift 1 w) t3 + in + subst,metasenv,ugraph,rest1 @ rest2 @ rest3 + | Cic.Appl l -> + List.fold_left + (fun (subst,metasenv,ugraph,acc) t -> + let subst,metasenv,ugraph,res = + find subst metasenv ugraph context w t + in + subst,metasenv,ugraph,res @ acc) + (subst,metasenv,ugraph,[]) l + | Cic.Cast (t, ty) -> + let subst,metasenv,ugraph,rest = + find subst metasenv ugraph context w t in + let subst,metasenv,ugraph,resty = + find subst metasenv ugraph context w ty + in + subst,metasenv,ugraph,rest @ resty + | Cic.Implicit _ -> assert false + | Cic.Const (_, esubst) + | Cic.Var (_, esubst) + | Cic.MutInd (_, _, esubst) + | Cic.MutConstruct (_, _, _, esubst) -> + List.fold_left + (fun (subst,metasenv,ugraph,acc) (_, t) -> + let subst,metasenv,ugraph,res = + find subst metasenv ugraph context w t + in + subst,metasenv,ugraph,res @ acc) + (subst,metasenv,ugraph,[]) esubst + | Cic.MutCase (_, _, outty, indterm, patterns) -> + let subst,metasenv,ugraph,resoutty = + find subst metasenv ugraph context w outty in + let subst,metasenv,ugraph,resindterm = + find subst metasenv ugraph context w indterm in + let subst,metasenv,ugraph,respatterns = + List.fold_left + (fun (subst,metasenv,ugraph,acc) p -> + let subst,metaseng,ugraph,res = + find subst metasenv ugraph context w p + in + subst,metasenv,ugraph,res @ acc + ) (subst,metasenv,ugraph,[]) patterns + in + subst,metasenv,ugraph,resoutty @ resindterm @ respatterns + | Cic.Fix (_, funl) -> + let tys = + List.map (fun (n,_,ty,_) -> Some (Cic.Name n,(Cic.Decl ty))) funl + in + List.fold_left ( + fun (subst,metasenv,ugraph,acc) (_, _, ty, bo) -> + let subst,metasenv,ugraph,resty = + find subst metasenv ugraph context w ty in + let subst,metasenv,ugraph,resbo = + find subst metasenv ugraph (tys @ context) w bo + in + subst,metasenv,ugraph, resty @ resbo @ acc + ) (subst,metasenv,ugraph,[]) funl + | Cic.CoFix (_, funl) -> + let tys = + List.map (fun (n,ty,_) -> Some (Cic.Name n,(Cic.Decl ty))) funl + in + List.fold_left ( + fun (subst,metasenv,ugraph,acc) (_, ty, bo) -> + let subst,metasenv,ugraph,resty = + find subst metasenv ugraph context w ty in + let subst,metasenv,ugraph,resbo = + find subst metasenv ugraph (tys @ context) w bo + in + subst,metasenv,ugraph, resty @ resbo @ acc + ) (subst,metasenv,ugraph,[]) funl + in + find subst metasenv ugraph context wanted t + +let select_in_term ~metasenv ~context ~ugraph ~term ~pattern:(wanted,where) = + let add_ctx context name entry = (Some (name, entry)) :: context in + let map2 error_msg f l1 l2 = + try + List.map2 f l1 l2 + with + | Invalid_argument _ -> raise (Bad_pattern (lazy error_msg)) + in + let rec aux context where term = + match (where, term) with + | Cic.Implicit (Some `Hole), t -> [context,t] + | Cic.Implicit (Some `Type), t -> [] + | Cic.Implicit None,_ -> [] + | Cic.Meta (_, ctxt1), Cic.Meta (_, ctxt2) -> + List.concat + (map2 "wrong number of argument in explicit substitution" + (fun t1 t2 -> + (match (t1, t2) with + Some t1, Some t2 -> aux context t1 t2 + | _ -> [])) + ctxt1 ctxt2) + | Cic.Cast (te1, ty1), Cic.Cast (te2, ty2) -> + aux context te1 te2 @ aux context ty1 ty2 + | Cic.Prod (Cic.Anonymous, s1, t1), Cic.Prod (name, s2, t2) + | Cic.Lambda (Cic.Anonymous, s1, t1), Cic.Lambda (name, s2, t2) -> + aux context s1 s2 @ aux (add_ctx context name (Cic.Decl s2)) t1 t2 + | Cic.Prod (Cic.Name n1, s1, t1), + Cic.Prod ((Cic.Name n2) as name , s2, t2) + | Cic.Lambda (Cic.Name n1, s1, t1), + Cic.Lambda ((Cic.Name n2) as name, s2, t2) when n1 = n2-> + aux context s1 s2 @ aux (add_ctx context name (Cic.Decl s2)) t1 t2 + | Cic.Prod (name1, s1, t1), Cic.Prod (name2, s2, t2) + | Cic.Lambda (name1, s1, t1), Cic.Lambda (name2, s2, t2) -> [] + | Cic.LetIn (Cic.Anonymous, s1, ty1, t1), Cic.LetIn (name, s2, ty2, t2) -> + aux context s1 s2 @ + aux context ty1 ty2 @ + aux (add_ctx context name (Cic.Def (s2,ty2))) t1 t2 + | Cic.LetIn (Cic.Name n1, s1, ty1, t1), + Cic.LetIn ((Cic.Name n2) as name, s2, ty2, t2) when n1 = n2-> + aux context s1 s2 @ + aux context ty1 ty2 @ + aux (add_ctx context name (Cic.Def (s2,ty2))) t1 t2 + | Cic.LetIn (name1, s1, ty1, t1), Cic.LetIn (name2, s2, ty2, t2) -> [] + | Cic.Appl terms1, Cic.Appl terms2 -> auxs context terms1 terms2 + | Cic.Var (_, subst1), Cic.Var (_, subst2) + | Cic.Const (_, subst1), Cic.Const (_, subst2) + | Cic.MutInd (_, _, subst1), Cic.MutInd (_, _, subst2) + | Cic.MutConstruct (_, _, _, subst1), Cic.MutConstruct (_, _, _, subst2) -> + auxs context (List.map snd subst1) (List.map snd subst2) + | Cic.MutCase (_, _, out1, t1, pat1), Cic.MutCase (_ , _, out2, t2, pat2) -> + aux context out1 out2 @ aux context t1 t2 @ auxs context pat1 pat2 + | Cic.Fix (_, funs1), Cic.Fix (_, funs2) -> + let tys = + List.map (fun (n,_,ty,_) -> Some (Cic.Name n,(Cic.Decl ty))) funs2 + in + List.concat + (map2 "wrong number of mutually recursive functions" + (fun (_, _, ty1, bo1) (_, _, ty2, bo2) -> + aux context ty1 ty2 @ aux (tys @ context) bo1 bo2) + funs1 funs2) + | Cic.CoFix (_, funs1), Cic.CoFix (_, funs2) -> + let tys = + List.map (fun (n,ty,_) -> Some (Cic.Name n,(Cic.Decl ty))) funs2 + in + List.concat + (map2 "wrong number of mutually co-recursive functions" + (fun (_, ty1, bo1) (_, ty2, bo2) -> + aux context ty1 ty2 @ aux (tys @ context) bo1 bo2) + funs1 funs2) + | x,y -> + raise (Bad_pattern + (lazy (Printf.sprintf "Pattern %s versus term %s" + (CicPp.ppterm x) + (CicPp.ppterm y)))) + and auxs context terms1 terms2 = (* as aux for list of terms *) + List.concat (map2 "wrong number of arguments in application" + (fun t1 t2 -> aux context t1 t2) terms1 terms2) + in + let roots = + match where with + | None -> [] + | Some where -> aux context where term + in + match wanted with + None -> [],metasenv,ugraph,roots + | Some wanted -> + let rec find_in_roots = + function + [] -> [],metasenv,ugraph,[] + | (context',where)::tl -> + let subst,metasenv,ugraph,tl' = find_in_roots tl in + let subst,metasenv,ugraph,found = + let wanted, metasenv, ugraph = wanted context' metasenv ugraph in + find_subterms ~subst ~metasenv ~ugraph ~wanted ~context:context' + where + in + subst,metasenv,ugraph,found @ tl' + in + find_in_roots roots + +(** create a pattern from a term and a list of subterms. +* the pattern is granted to have a ? for every subterm that has no selected +* subterms +* @param equality equality function used while walking the term. Defaults to +* physical equality (==) *) +let pattern_of ?(equality=(==)) ~term terms = + let (===) x y = equality x y in + let not_found = false, Cic.Implicit None in + let rec aux t = + match t with + | t when List.exists (fun t' -> t === t') terms -> + true,Cic.Implicit (Some `Hole) + | Cic.Var (uri, subst) -> + let b,subst = aux_subst subst in + if b then + true,Cic.Var (uri, subst) + else + not_found + | Cic.Meta (i, ctxt) -> + let b,ctxt = + List.fold_right + (fun e (b,ctxt) -> + match e with + None -> b,None::ctxt + | Some t -> let bt,t = aux t in b||bt ,Some t::ctxt + ) ctxt (false,[]) + in + if b then + true,Cic.Meta (i, ctxt) + else + not_found + | Cic.Cast (te, ty) -> + let b1,te = aux te in + let b2,ty = aux ty in + if b1||b2 then true,Cic.Cast (te, ty) + else + not_found + | Cic.Prod (_, s, t) -> + let b1,s = aux s in + let b2,t = aux t in + if b1||b2 then + true, Cic.Prod (Cic.Anonymous, s, t) + else + not_found + | Cic.Lambda (_, s, t) -> + let b1,s = aux s in + let b2,t = aux t in + if b1||b2 then + true, Cic.Lambda (Cic.Anonymous, s, t) + else + not_found + | Cic.LetIn (_, s, ty, t) -> + let b1,s = aux s in + let b2,ty = aux ty in + let b3,t = aux t in + if b1||b2||b3 then + true, Cic.LetIn (Cic.Anonymous, s, ty, t) + else + not_found + | Cic.Appl terms -> + let b,terms = + List.fold_right + (fun t (b,terms) -> + let bt,t = aux t in + b||bt,t::terms + ) terms (false,[]) + in + if b then + true,Cic.Appl terms + else + not_found + | Cic.Const (uri, subst) -> + let b,subst = aux_subst subst in + if b then + true, Cic.Const (uri, subst) + else + not_found + | Cic.MutInd (uri, tyno, subst) -> + let b,subst = aux_subst subst in + if b then + true, Cic.MutInd (uri, tyno, subst) + else + not_found + | Cic.MutConstruct (uri, tyno, consno, subst) -> + let b,subst = aux_subst subst in + if b then + true, Cic.MutConstruct (uri, tyno, consno, subst) + else + not_found + | Cic.MutCase (uri, tyno, outty, t, pat) -> + let b1,outty = aux outty in + let b2,t = aux t in + let b3,pat = + List.fold_right + (fun t (b,pat) -> + let bt,t = aux t in + bt||b,t::pat + ) pat (false,[]) + in + if b1 || b2 || b3 then + true, Cic.MutCase (uri, tyno, outty, t, pat) + else + not_found + | Cic.Fix (funno, funs) -> + let b,funs = + List.fold_right + (fun (name, i, ty, bo) (b,funs) -> + let b1,ty = aux ty in + let b2,bo = aux bo in + b||b1||b2, (name, i, ty, bo)::funs) funs (false,[]) + in + if b then + true, Cic.Fix (funno, funs) + else + not_found + | Cic.CoFix (funno, funs) -> + let b,funs = + List.fold_right + (fun (name, ty, bo) (b,funs) -> + let b1,ty = aux ty in + let b2,bo = aux bo in + b||b1||b2, (name, ty, bo)::funs) funs (false,[]) + in + if b then + true, Cic.CoFix (funno, funs) + else + not_found + | Cic.Rel _ + | Cic.Sort _ + | Cic.Implicit _ -> not_found + and aux_subst subst = + List.fold_right + (fun (uri, t) (b,subst) -> + let b1,t = aux t in + b||b1,(uri, t)::subst) subst (false,[]) + in + snd (aux term) + +exception Fail of string Lazy.t + + (** select metasenv conjecture pattern + * select all subterms of [conjecture] matching [pattern]. + * It returns the set of matched terms (that can be compared using physical + * equality to the subterms of [conjecture]) together with their contexts. + * The representation of the set mimics the ProofEngineTypes.pattern type: + * a list of hypothesis (names of) together with the list of its matched + * subterms (and their contexts) + the list of matched subterms of the + * with their context conclusion. Note: in the result the list of hypothesis + * has an entry for each entry in the context and in the same order. + * Of course the list of terms (with their context) associated to the + * hypothesis name may be empty. + * + * @raise Bad_pattern + * *) + let select ~metasenv ~ugraph ~conjecture:(_,context,ty) + ~(pattern: (Cic.term, Cic.lazy_term) ProofEngineTypes.pattern) + = + let what, hyp_patterns, goal_pattern = pattern in + let find_pattern_for name = + try Some (snd (List.find (fun (n, pat) -> Cic.Name n = name) hyp_patterns)) + with Not_found -> None in + (* Multiple hypotheses with the same name can be in the context. + In this case we need to pick the last one, but we will perform + a fold_right on the context. Thus we pre-process hyp_patterns. *) + let full_hyp_pattern = + let rec aux blacklist = + function + [] -> [] + | None::tl -> None::aux blacklist tl + | Some (name,_)::tl -> + if List.mem name blacklist then + None::aux blacklist tl + else + find_pattern_for name::aux (name::blacklist) tl + in + aux [] context + in + let subst,metasenv,ugraph,ty_terms = + select_in_term ~metasenv ~context ~ugraph ~term:ty + ~pattern:(what,goal_pattern) in + let subst,metasenv,ugraph,context_terms = + let subst,metasenv,ugraph,res,_ = + (List.fold_right + (fun (pattern,entry) (subst,metasenv,ugraph,res,context) -> + match entry with + None -> subst,metasenv,ugraph,None::res,None::context + | Some (name,Cic.Decl term) -> + (match pattern with + | None -> + subst,metasenv,ugraph,((Some (`Decl []))::res),(entry::context) + | Some pat -> + let subst,metasenv,ugraph,terms = + select_in_term ~metasenv ~context ~ugraph ~term + ~pattern:(what, Some pat) + in + subst,metasenv,ugraph,((Some (`Decl terms))::res), + (entry::context)) + | Some (name,Cic.Def (bo, ty)) -> + (match pattern with + | None -> + let selected_ty = [] in + subst,metasenv,ugraph,((Some (`Def ([],selected_ty)))::res), + (entry::context) + | Some pat -> + let subst,metasenv,ugraph,terms_bo = + select_in_term ~metasenv ~context ~ugraph ~term:bo + ~pattern:(what, Some pat) in + let subst,metasenv,ugraph,terms_ty = + let subst,metasenv,ugraph,res = + select_in_term ~metasenv ~context ~ugraph ~term:ty + ~pattern:(what, Some pat) + in + subst,metasenv,ugraph,res + in + subst,metasenv,ugraph,((Some (`Def (terms_bo,terms_ty)))::res), + (entry::context)) + ) (List.combine full_hyp_pattern context) (subst,metasenv,ugraph,[],[])) + in + subst,metasenv,ugraph,res + in + subst,metasenv,ugraph,context_terms, ty_terms + +(** locate_in_term equality what where context +* [what] must match a subterm of [where] according to [equality] +* It returns the matched terms together with their contexts in [where] +* [equality] defaults to physical equality +* [context] must be the context of [where] +*) +let locate_in_term ?(equality=(fun _ -> (==))) what ~where context = + let add_ctx context name entry = + (Some (name, entry)) :: context in + let rec aux context where = + if equality context what where then [context,where] + else + match where with + | Cic.Implicit _ + | Cic.Meta _ + | Cic.Rel _ + | Cic.Sort _ + | Cic.Var _ + | Cic.Const _ + | Cic.MutInd _ + | Cic.MutConstruct _ -> [] + | Cic.Cast (te, ty) -> aux context te @ aux context ty + | Cic.Prod (name, s, t) + | Cic.Lambda (name, s, t) -> + aux context s @ aux (add_ctx context name (Cic.Decl s)) t + | Cic.LetIn (name, s, ty, t) -> + aux context s @ + aux context ty @ + aux (add_ctx context name (Cic.Def (s,ty))) t + | Cic.Appl tl -> auxs context tl + | Cic.MutCase (_, _, out, t, pat) -> + aux context out @ aux context t @ auxs context pat + | Cic.Fix (_, funs) -> + let tys = + List.map (fun (n,_,ty,_) -> Some (Cic.Name n,(Cic.Decl ty))) funs + in + List.concat + (List.map + (fun (_, _, ty, bo) -> + aux context ty @ aux (tys @ context) bo) + funs) + | Cic.CoFix (_, funs) -> + let tys = + List.map (fun (n,ty,_) -> Some (Cic.Name n,(Cic.Decl ty))) funs + in + List.concat + (List.map + (fun (_, ty, bo) -> + aux context ty @ aux (tys @ context) bo) + funs) + and auxs context tl = (* as aux for list of terms *) + List.concat (List.map (fun t -> aux context t) tl) + in + aux context where + +(** locate_in_conjecture equality what where context +* [what] must match a subterm of [where] according to [equality] +* It returns the matched terms together with their contexts in [where] +* [equality] defaults to physical equality +* [context] must be the context of [where] +*) +let locate_in_conjecture ?(equality=fun _ -> (==)) what (_,context,ty) = + let context,res = + List.fold_right + (fun entry (context,res) -> + match entry with + None -> entry::context, res + | Some (_, Cic.Decl ty) -> + let res = res @ locate_in_term what ~where:ty context in + let context' = entry::context in + context',res + | Some (_, Cic.Def (bo,ty)) -> + let res = res @ locate_in_term what ~where:bo context in + let res = res @ locate_in_term what ~where:ty context in + let context' = entry::context in + context',res + ) context ([],[]) + in + res @ locate_in_term what ~where:ty context + +let lookup_type metasenv context hyp = + let rec aux p = function + | Some (Cic.Name name, Cic.Decl t) :: _ when name = hyp -> p, t + | Some (Cic.Name name, Cic.Def (_,t)) :: _ when name = hyp -> p, t + | _ :: tail -> aux (succ p) tail + | [] -> raise (ProofEngineTypes.Fail (lazy "lookup_type: not premise in the current goal")) + in + aux 1 context + +(* FG: **********************************************************************) + +let get_name context index = + try match List.nth context (pred index) with + | Some (Cic.Name name, _) -> Some name + | _ -> None + with Invalid_argument "List.nth" -> None + +let get_rel context name = + let rec aux i = function + | [] -> None + | Some (Cic.Name s, _) :: _ when s = name -> Some (Cic.Rel i) + | _ :: tl -> aux (succ i) tl + in + aux 1 context + +let split_with_whd (c, t) = + let add s v c = Some (s, Cic.Decl v) :: c in + let rec aux whd a n c = function + | Cic.Prod (s, v, t) -> aux false ((c, v) :: a) (succ n) (add s v c) t + | v when whd -> (c, v) :: a, n + | v -> aux true a n c (CicReduction.whd c v) + in + aux false [] 0 c t + +let split_with_normalize (c, t) = + let add s v c = Some (s, Cic.Decl v) :: c in + let rec aux a n c = function + | Cic.Prod (s, v, t) -> aux ((c, v) :: a) (succ n) (add s v c) t + | v -> (c, v) :: a, n + in + aux [] 0 c (CicReduction.normalize c t) + + (* menv sorting *) +module OT = + struct + type t = Cic.conjecture + let compare (i,_,_) (j,_,_) = Pervasives.compare i j + end +module MS = HTopoSort.Make(OT) +let relations_of_menv m c = + let i, ctx, ty = c in + let m = List.filter (fun (j,_,_) -> j <> i) m in + let m_ty = List.map fst (CicUtil.metas_of_term ty) in + let m_ctx = + List.flatten + (List.map + (function + | None -> [] + | Some (_,Cic.Decl t) -> + List.map fst (CicUtil.metas_of_term ty) + | Some (_,Cic.Def (t,ty)) -> + List.map fst (CicUtil.metas_of_term ty) @ + List.map fst (CicUtil.metas_of_term t)) + ctx) + in + let metas = HExtlib.list_uniq (List.sort compare (m_ty @ m_ctx)) in + List.filter (fun (i,_,_) -> List.exists ((=) i) metas) m +;; +let sort_metasenv (m : Cic.metasenv) = + (MS.topological_sort m (relations_of_menv m) : Cic.metasenv) +;;