X-Git-Url: http://matita.cs.unibo.it/gitweb/?p=helm.git;a=blobdiff_plain;f=helm%2Fmatita%2Flibrary%2Fnat%2Fexp.ma;fp=helm%2Fmatita%2Flibrary%2Fnat%2Fexp.ma;h=11d84f74ca7deb3b676007693f72b585c0547435;hp=0000000000000000000000000000000000000000;hb=792b5d29ebae8f917043d9dd226692919b5d6ca1;hpb=a14a8c7637fd0b95e9d4deccb20c6abc98e8f953 diff --git a/helm/matita/library/nat/exp.ma b/helm/matita/library/nat/exp.ma new file mode 100644 index 000000000..11d84f74c --- /dev/null +++ b/helm/matita/library/nat/exp.ma @@ -0,0 +1,97 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| A.Asperti, C.Sacerdoti Coen, *) +(* ||A|| E.Tassi, S.Zacchiroli *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU Lesser General Public License Version 2.1 *) +(* *) +(**************************************************************************) + +set "baseuri" "cic:/matita/nat/exp". + +include "nat/div_and_mod.ma". + +let rec exp n m on m\def + match m with + [ O \Rightarrow (S O) + | (S p) \Rightarrow (times n (exp n p)) ]. + +interpretation "natural exponent" 'exp a b = (cic:/matita/nat/exp/exp.con a b). + +theorem exp_plus_times : \forall n,p,q:nat. +n \sup (p + q) = (n \sup p) * (n \sup q). +intros.elim p. +simplify.rewrite < plus_n_O.reflexivity. +simplify.rewrite > H.symmetry. +apply assoc_times. +qed. + +theorem exp_n_O : \forall n:nat. S O = n \sup O. +intro.simplify.reflexivity. +qed. + +theorem exp_n_SO : \forall n:nat. n = n \sup (S O). +intro.simplify.rewrite < times_n_SO.reflexivity. +qed. + +theorem exp_exp_times : \forall n,p,q:nat. +(n \sup p) \sup q = n \sup (p * q). +intros. +elim q.simplify.rewrite < times_n_O.simplify.reflexivity. +simplify.rewrite > H.rewrite < exp_plus_times. +rewrite < times_n_Sm.reflexivity. +qed. + +theorem lt_O_exp: \forall n,m:nat. O < n \to O < n \sup m. +intros.elim m.simplify.unfold lt.apply le_n. +simplify.unfold lt.rewrite > times_n_SO. +apply le_times.assumption.assumption. +qed. + +theorem lt_m_exp_nm: \forall n,m:nat. (S O) < n \to m < n \sup m. +intros.elim m.simplify.unfold lt.reflexivity. +simplify.unfold lt. +apply (trans_le ? ((S(S O))*(S n1))). +simplify. +rewrite < plus_n_Sm.apply le_S_S.apply le_S_S. +rewrite < sym_plus. +apply le_plus_n. +apply le_times.assumption.assumption. +qed. + +theorem exp_to_eq_O: \forall n,m:nat. (S O) < n +\to n \sup m = (S O) \to m = O. +intros.apply antisym_le.apply le_S_S_to_le. +rewrite < H1.change with (m < n \sup m). +apply lt_m_exp_nm.assumption. +apply le_O_n. +qed. + +theorem injective_exp_r: \forall n:nat. (S O) < n \to +injective nat nat (\lambda m:nat. n \sup m). +simplify.intros 4. +apply (nat_elim2 (\lambda x,y.n \sup x = n \sup y \to x = y)). +intros.apply sym_eq.apply (exp_to_eq_O n).assumption. +rewrite < H1.reflexivity. +intros.apply (exp_to_eq_O n).assumption.assumption. +intros.apply eq_f. +apply H1. +(* esprimere inj_times senza S *) +cut (\forall a,b:nat.O < n \to n*a=n*b \to a=b). +apply Hcut.simplify.unfold lt.apply le_S_S_to_le. apply le_S. assumption. +assumption. +intros 2. +apply (nat_case n). +intros.apply False_ind.apply (not_le_Sn_O O H3). +intros. +apply (inj_times_r m1).assumption. +qed. + +variant inj_exp_r: \forall p:nat. (S O) < p \to \forall n,m:nat. +p \sup n = p \sup m \to n = m \def +injective_exp_r.