X-Git-Url: http://matita.cs.unibo.it/gitweb/?p=helm.git;a=blobdiff_plain;f=helm%2Fmatita%2Flibrary%2Fnat%2Fnth_prime.ma;fp=helm%2Fmatita%2Flibrary%2Fnat%2Fnth_prime.ma;h=5330f52adbb923ddd84fc91ac1a876b373751ccc;hp=0000000000000000000000000000000000000000;hb=792b5d29ebae8f917043d9dd226692919b5d6ca1;hpb=a14a8c7637fd0b95e9d4deccb20c6abc98e8f953 diff --git a/helm/matita/library/nat/nth_prime.ma b/helm/matita/library/nat/nth_prime.ma new file mode 100644 index 000000000..5330f52ad --- /dev/null +++ b/helm/matita/library/nat/nth_prime.ma @@ -0,0 +1,200 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| A.Asperti, C.Sacerdoti Coen, *) +(* ||A|| E.Tassi, S.Zacchiroli *) +(* \ / *) +(* \ / Matita is distributed under the terms of the *) +(* v GNU Lesser General Public License Version 2.1 *) +(* *) +(**************************************************************************) + +set "baseuri" "cic:/matita/nat/nth_prime". + +include "nat/primes.ma". +include "nat/lt_arith.ma". + +(* upper bound by Bertrand's conjecture. *) +(* Too difficult to prove. +let rec nth_prime n \def +match n with + [ O \Rightarrow (S(S O)) + | (S p) \Rightarrow + let previous_prime \def S (nth_prime p) in + min_aux previous_prime ((S(S O))*previous_prime) primeb]. + +theorem example8 : nth_prime (S(S O)) = (S(S(S(S(S O))))). +normalize.reflexivity. +qed. + +theorem example9 : nth_prime (S(S(S O))) = (S(S(S(S(S(S(S O))))))). +normalize.reflexivity. +qed. + +theorem example10 : nth_prime (S(S(S(S O)))) = (S(S(S(S(S(S(S(S(S(S(S O))))))))))). +normalize.reflexivity. +qed. *) + +theorem smallest_factor_fact: \forall n:nat. +n < smallest_factor (S n!). +intros. +apply not_le_to_lt. +change with (smallest_factor (S n!) \le n \to False).intro. +apply (not_divides_S_fact n (smallest_factor(S n!))). +apply lt_SO_smallest_factor. +unfold lt.apply le_S_S.apply le_SO_fact. +assumption. +apply divides_smallest_factor_n. +unfold lt.apply le_S_S.apply le_O_n. +qed. + +theorem ex_prime: \forall n. (S O) \le n \to \exists m. +n < m \land m \le S n! \land (prime m). +intros. +elim H. +apply (ex_intro nat ? (S(S O))). +split.split.apply (le_n (S(S O))). +apply (le_n (S(S O))).apply (primeb_to_Prop (S(S O))). +apply (ex_intro nat ? (smallest_factor (S (S n1)!))). +split.split. +apply smallest_factor_fact. +apply le_smallest_factor_n. +(* Andrea: ancora hint non lo trova *) +apply prime_smallest_factor_n. +change with ((S(S O)) \le S (S n1)!). +apply le_S.apply le_SSO_fact. +unfold lt.apply le_S_S.assumption. +qed. + +let rec nth_prime n \def +match n with + [ O \Rightarrow (S(S O)) + | (S p) \Rightarrow + let previous_prime \def (nth_prime p) in + let upper_bound \def S previous_prime! in + min_aux (upper_bound - (S previous_prime)) upper_bound primeb]. + +(* it works, but nth_prime 4 takes already a few minutes - +it must compute factorial of 7 ... + +theorem example11 : nth_prime (S(S O)) = (S(S(S(S(S O))))). +normalize.reflexivity. +qed. + +theorem example12: nth_prime (S(S(S O))) = (S(S(S(S(S(S(S O))))))). +normalize.reflexivity. +qed. + +theorem example13 : nth_prime (S(S(S(S O)))) = (S(S(S(S(S(S(S(S(S(S(S O))))))))))). +normalize.reflexivity. +*) + +theorem prime_nth_prime : \forall n:nat.prime (nth_prime n). +intro. +apply (nat_case n). +change with (prime (S(S O))). +apply (primeb_to_Prop (S(S O))). +intro. +change with +(let previous_prime \def (nth_prime m) in +let upper_bound \def S previous_prime! in +prime (min_aux (upper_bound - (S previous_prime)) upper_bound primeb)). +apply primeb_true_to_prime. +apply f_min_aux_true. +apply (ex_intro nat ? (smallest_factor (S (nth_prime m)!))). +split.split. +cut (S (nth_prime m)!-(S (nth_prime m)! - (S (nth_prime m))) = (S (nth_prime m))). +rewrite > Hcut.exact (smallest_factor_fact (nth_prime m)). +(* maybe we could factorize this proof *) +apply plus_to_minus. +apply plus_minus_m_m. +apply le_S_S. +apply le_n_fact_n. +apply le_smallest_factor_n. +apply prime_to_primeb_true. +apply prime_smallest_factor_n. +change with ((S(S O)) \le S (nth_prime m)!). +apply le_S_S.apply le_SO_fact. +qed. + +(* properties of nth_prime *) +theorem increasing_nth_prime: increasing nth_prime. +change with (\forall n:nat. (nth_prime n) < (nth_prime (S n))). +intros. +change with +(let previous_prime \def (nth_prime n) in +let upper_bound \def S previous_prime! in +(S previous_prime) \le min_aux (upper_bound - (S previous_prime)) upper_bound primeb). +intros. +cut (upper_bound - (upper_bound -(S previous_prime)) = (S previous_prime)). +rewrite < Hcut in \vdash (? % ?). +apply le_min_aux. +apply plus_to_minus. +apply plus_minus_m_m. +apply le_S_S. +apply le_n_fact_n. +qed. + +variant lt_nth_prime_n_nth_prime_Sn :\forall n:nat. +(nth_prime n) < (nth_prime (S n)) \def increasing_nth_prime. + +theorem injective_nth_prime: injective nat nat nth_prime. +apply increasing_to_injective. +apply increasing_nth_prime. +qed. + +theorem lt_SO_nth_prime_n : \forall n:nat. (S O) \lt nth_prime n. +intros. elim n.unfold lt.apply le_n. +apply (trans_lt ? (nth_prime n1)). +assumption.apply lt_nth_prime_n_nth_prime_Sn. +qed. + +theorem lt_O_nth_prime_n : \forall n:nat. O \lt nth_prime n. +intros.apply (trans_lt O (S O)). +unfold lt. apply le_n.apply lt_SO_nth_prime_n. +qed. + +theorem ex_m_le_n_nth_prime_m: +\forall n: nat. nth_prime O \le n \to +\exists m. nth_prime m \le n \land n < nth_prime (S m). +intros. +apply increasing_to_le2. +exact lt_nth_prime_n_nth_prime_Sn.assumption. +qed. + +theorem lt_nth_prime_to_not_prime: \forall n,m. nth_prime n < m \to m < nth_prime (S n) +\to \lnot (prime m). +intros. +apply primeb_false_to_not_prime. +letin previous_prime \def (nth_prime n). +letin upper_bound \def (S previous_prime!). +apply (lt_min_aux_to_false primeb upper_bound (upper_bound - (S previous_prime)) m). +cut (S (nth_prime n)!-(S (nth_prime n)! - (S (nth_prime n))) = (S (nth_prime n))). +rewrite > Hcut.assumption. +apply plus_to_minus. +apply plus_minus_m_m. +apply le_S_S. +apply le_n_fact_n. +assumption. +qed. + +(* nth_prime enumerates all primes *) +theorem prime_to_nth_prime : \forall p:nat. prime p \to +\exists i. nth_prime i = p. +intros. +cut (\exists m. nth_prime m \le p \land p < nth_prime (S m)). +elim Hcut.elim H1. +cut (nth_prime a < p \lor nth_prime a = p). +elim Hcut1. +absurd (prime p). +assumption. +apply (lt_nth_prime_to_not_prime a).assumption.assumption. +apply (ex_intro nat ? a).assumption. +apply le_to_or_lt_eq.assumption. +apply ex_m_le_n_nth_prime_m. +simplify.unfold prime in H.elim H.assumption. +qed. +