X-Git-Url: http://matita.cs.unibo.it/gitweb/?p=helm.git;a=blobdiff_plain;f=helm%2Focaml%2Fcic_proof_checking%2FcicReductionMachine.ml;fp=helm%2Focaml%2Fcic_proof_checking%2FcicReductionMachine.ml;h=0000000000000000000000000000000000000000;hp=93335625a25c0951ef4ade711069f75ef3bc19fd;hb=869549224eef6278a48c16ae27dd786376082b38;hpb=89262281b6e83bd2321150f81f1a0583645eb0c8 diff --git a/helm/ocaml/cic_proof_checking/cicReductionMachine.ml b/helm/ocaml/cic_proof_checking/cicReductionMachine.ml deleted file mode 100644 index 93335625a..000000000 --- a/helm/ocaml/cic_proof_checking/cicReductionMachine.ml +++ /dev/null @@ -1,383 +0,0 @@ -(* Copyright (C) 2000, HELM Team. - * - * This file is part of HELM, an Hypertextual, Electronic - * Library of Mathematics, developed at the Computer Science - * Department, University of Bologna, Italy. - * - * HELM is free software; you can redistribute it and/or - * modify it under the terms of the GNU General Public License - * as published by the Free Software Foundation; either version 2 - * of the License, or (at your option) any later version. - * - * HELM is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with HELM; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place - Suite 330, Boston, - * MA 02111-1307, USA. - * - * For details, see the HELM World-Wide-Web page, - * http://cs.unibo.it/helm/. - *) - -exception CicReductionInternalError;; -exception WrongUriToInductiveDefinition;; - -let fdebug = ref 1;; -let debug t env s = - let rec debug_aux t i = - let module C = Cic in - let module U = UriManager in - CicPp.ppobj (C.Variable ("DEBUG", None, t)) ^ "\n" ^ i - in - if !fdebug = 0 then - begin - print_endline (s ^ "\n" ^ List.fold_right debug_aux (t::env) "") ; - flush stdout - end -;; - -exception Impossible of int;; -exception ReferenceToDefinition;; -exception ReferenceToAxiom;; -exception ReferenceToVariable;; -exception ReferenceToCurrentProof;; -exception ReferenceToInductiveDefinition;; - -type env = Cic.term list;; -type stack = Cic.term list;; -type config = int * env * Cic.term * stack;; - -(* k is the length of the environment e *) -(* m is the current depth inside the term *) -let unwind' m k e t = - let module C = Cic in - let module S = CicSubstitution in - if e = [] & k = 0 then t else - let rec unwind_aux m = function - C.Rel n as t -> if n <= m then t else - let d = try Some (List.nth e (n-m-1)) - with _ -> None - in (match d with - Some t' -> if m = 0 then t' - else S.lift m t' - | None -> C.Rel (n-k)) - | C.Var _ as t -> t - | C.Meta (i,l) as t -> t - | C.Sort _ as t -> t - | C.Implicit as t -> t - | C.Cast (te,ty) -> C.Cast (unwind_aux m te, unwind_aux m ty) (*CSC ??? *) - | C.Prod (n,s,t) -> C.Prod (n, unwind_aux m s, unwind_aux (m + 1) t) - | C.Lambda (n,s,t) -> C.Lambda (n, unwind_aux m s, unwind_aux (m + 1) t) - | C.LetIn (n,s,t) -> C.LetIn (n, unwind_aux m s, unwind_aux (m + 1) t) - | C.Appl l -> C.Appl (List.map (unwind_aux m) l) - | C.Const _ as t -> t - | C.MutInd _ as t -> t - | C.MutConstruct _ as t -> t - | C.MutCase (sp,cookingsno,i,outt,t,pl) -> - C.MutCase (sp,cookingsno,i,unwind_aux m outt, unwind_aux m t, - List.map (unwind_aux m) pl) - | C.Fix (i,fl) -> - let len = List.length fl in - let substitutedfl = - List.map - (fun (name,i,ty,bo) -> (name, i, unwind_aux m ty, unwind_aux (m+len) bo)) - fl - in - C.Fix (i, substitutedfl) - | C.CoFix (i,fl) -> - let len = List.length fl in - let substitutedfl = - List.map - (fun (name,ty,bo) -> (name, unwind_aux m ty, unwind_aux (m+len) bo)) - fl - in - C.CoFix (i, substitutedfl) - in - unwind_aux m t - ;; - -let unwind = - unwind' 0 -;; - -let rec reduce : config -> Cic.term = - let module C = Cic in - let module S = CicSubstitution in - function - (k, e, (C.Rel n as t), s) -> let d = -(* prerr_string ("Rel " ^ string_of_int n) ; flush stderr ; *) - try Some (List.nth e (n-1)) - with _ -> None - in (match d with - Some t' -> reduce (0, [],t',s) - | None -> if s = [] then C.Rel (n-k) - else C.Appl (C.Rel (n-k)::s)) - | (k, e, (C.Var uri as t), s) -> - (match CicEnvironment.get_cooked_obj uri 0 with - C.Definition _ -> raise ReferenceToDefinition - | C.Axiom _ -> raise ReferenceToAxiom - | C.CurrentProof _ -> raise ReferenceToCurrentProof - | C.InductiveDefinition _ -> raise ReferenceToInductiveDefinition - | C.Variable (_,None,_) -> if s = [] then t else C.Appl (t::s) - | C.Variable (_,Some body,_) -> reduce (0, [], body, s) - ) - | (k, e, (C.Meta _ as t), s) -> if s = [] then t - else C.Appl (t::s) - | (k, e, (C.Sort _ as t), s) -> t (* s should be empty *) - | (k, e, (C.Implicit as t), s) -> t (* s should be empty *) - | (k, e, (C.Cast (te,ty) as t), s) -> reduce (k, e,te,s) (* s should be empty *) - | (k, e, (C.Prod _ as t), s) -> unwind k e t (* s should be empty *) - | (k, e, (C.Lambda (_,_,t) as t'), []) -> unwind k e t' - | (k, e, C.Lambda (_,_,t), p::s) -> -(* prerr_string ("Lambda body: " ^ CicPp.ppterm t) ; flush stderr ; *) - reduce (k+1, p::e,t,s) - | (k, e, (C.LetIn (_,m,t) as t'), s) -> let m' = reduce (k,e,m,[]) in - reduce (k+1, m'::e,t,s) - | (k, e, C.Appl [], s) -> raise (Impossible 1) - (* this is lazy - | (k, e, C.Appl (he::tl), s) -> let tl' = List.map (unwind k e) tl - in reduce (k, e, he, (List.append tl' s)) *) - (* this is strict *) - | (k, e, C.Appl (he::tl), s) -> - (* constants are NOT unfolded *) - let red = function - C.Const _ as t -> t - | t -> reduce (k, e,t,[]) in - let tl' = List.map red tl in - reduce (k, e, he , List.append tl' s) -(* - | (k, e, C.Appl ((C.Lambda _ as he)::tl), s) - | (k, e, C.Appl ((C.Const _ as he)::tl), s) - | (k, e, C.Appl ((C.MutCase _ as he)::tl), s) - | (k, e, C.Appl ((C.Fix _ as he)::tl), s) -> -(* strict evaluation, but constants are NOT - unfolded *) - let red = function - C.Const _ as t -> t - | t -> reduce (k, e,t,[]) in - let tl' = List.map red tl in - reduce (k, e, he , List.append tl' s) - | (k, e, C.Appl l, s) -> C.Appl (List.append (List.map (unwind k e) l) s) *) - | (k, e, (C.Const (uri,cookingsno) as t), s) -> - (match CicEnvironment.get_cooked_obj uri cookingsno with - C.Definition (_,body,_,_) -> reduce (0, [], body, s) - (* constants are closed *) - | C.Axiom _ -> if s = [] then t else C.Appl (t::s) - | C.Variable _ -> raise ReferenceToVariable - | C.CurrentProof (_,_,body,_) -> reduce (0, [], body, s) - | C.InductiveDefinition _ -> raise ReferenceToInductiveDefinition - ) - | (k, e, (C.MutInd (uri,_,_) as t),s) -> let t' = unwind k e t in - if s = [] then t' else C.Appl (t'::s) - | (k, e, (C.MutConstruct (uri,_,_,_) as t),s) -> - let t' = unwind k e t in - if s = [] then t' else C.Appl (t'::s) - | (k, e, (C.MutCase (mutind,cookingsno,i,_,term,pl) as t),s) -> - let decofix = - function - C.CoFix (i,fl) as t -> - let (_,_,body) = List.nth fl i in - let body' = - let counter = ref (List.length fl) in - List.fold_right - (fun _ -> decr counter ; S.subst (C.CoFix (!counter,fl))) - fl - body - in - reduce (0,[],body',[]) - | C.Appl (C.CoFix (i,fl) :: tl) -> - let (_,_,body) = List.nth fl i in - let body' = - let counter = ref (List.length fl) in - List.fold_right - (fun _ -> decr counter ; S.subst (C.CoFix (!counter,fl))) - fl - body - in - reduce (0,[], body', tl) - | t -> t - in - (match decofix (reduce (k, e,term,[])) with - C.MutConstruct (_,_,_,j) -> reduce (k, e, (List.nth pl (j-1)), s) - | C.Appl (C.MutConstruct (_,_,_,j) :: tl) -> - let (arity, r, num_ingredients) = - match CicEnvironment.get_obj mutind with - C.InductiveDefinition (tl,ingredients,r) -> - let (_,_,arity,_) = List.nth tl i - and num_ingredients = - List.fold_right - (fun (k,l) i -> - if k < cookingsno then i + List.length l else i - ) ingredients 0 - in - (arity,r,num_ingredients) - | _ -> raise WrongUriToInductiveDefinition - in - let ts = - let num_to_eat = r + num_ingredients in - let rec eat_first = - function - (0,l) -> l - | (n,he::tl) when n > 0 -> eat_first (n - 1, tl) - | _ -> raise (Impossible 5) - in - eat_first (num_to_eat,tl) - in - reduce (k, e, (List.nth pl (j-1)),(ts@s)) - | C.Cast _ | C.Implicit -> - raise (Impossible 2) (* we don't trust our whd ;-) *) - | _ -> let t' = unwind k e t in - if s = [] then t' else C.Appl (t'::s) - ) - | (k, e, (C.Fix (i,fl) as t), s) -> - let (_,recindex,_,body) = List.nth fl i in - let recparam = - try - Some (List.nth s recindex) - with - _ -> None - in - (match recparam with - Some recparam -> - (match reduce (0,[],recparam,[]) with - (* match recparam with *) - C.MutConstruct _ - | C.Appl ((C.MutConstruct _)::_) -> - (* OLD - let body' = - let counter = ref (List.length fl) in - List.fold_right - (fun _ -> decr counter ; S.subst (C.Fix (!counter,fl))) - fl - body - in - reduce (k, e, body', s) *) - (* NEW *) - let leng = List.length fl in - let fl' = - let unwind_fl (name,recindex,typ,body) = - (name,recindex,unwind' leng k e typ, unwind' leng k e body) in - List.map unwind_fl fl in - let new_env = - let counter = ref leng in - let rec build_env e = - if !counter = 0 then e else (decr counter; - build_env ((C.Fix (!counter,fl'))::e)) in - build_env e in - reduce (k+leng, new_env, body,s) - | _ -> let t' = unwind k e t in - if s = [] then t' else C.Appl (t'::s) - ) - | None -> let t' = unwind k e t in - if s = [] then t' else C.Appl (t'::s) - ) - | (k, e,(C.CoFix (i,fl) as t),s) -> let t' = unwind k e t in - if s = [] then t' else C.Appl (t'::s);; - -let rec whd = let module C = Cic in - function - C.Rel _ as t -> t - | C.Var _ as t -> reduce (0, [], t, []) - | C.Meta _ as t -> t - | C.Sort _ as t -> t - | C.Implicit as t -> t - | C.Cast (te,ty) -> whd te - | C.Prod _ as t -> t - | C.Lambda _ as t -> t - | C.LetIn (n,s,t) -> reduce (1, [s], t, []) - | C.Appl [] -> raise (Impossible 1) - | C.Appl (he::tl) -> reduce (0, [], he, tl) - | C.Const _ as t -> reduce (0, [], t, []) - | C.MutInd _ as t -> t - | C.MutConstruct _ as t -> t - | C.MutCase _ as t -> reduce (0, [], t, []) - | C.Fix _ as t -> reduce (0, [], t, []) - | C.CoFix _ as t -> reduce (0, [], t, []) - ;; - -(* let whd t = reduce (0, [],t,[]);; - let res = reduce (0, [],t,[]) in - let rescsc = CicReductionNaif.whd t in - if not (CicReductionNaif.are_convertible res rescsc) then - begin - prerr_endline ("PRIMA: " ^ CicPp.ppterm t) ; - flush stderr ; - prerr_endline ("DOPO: " ^ CicPp.ppterm res) ; - flush stderr ; - prerr_endline ("CSC: " ^ CicPp.ppterm rescsc) ; - flush stderr ; - assert false ; - end - else - res ;; *) - - -(* t1, t2 must be well-typed *) -let are_convertible = - let rec aux t1 t2 = - if t1 = t2 then true - else - let aux2 t1 t2 = - let module U = UriManager in - let module C = Cic in - match (t1,t2) with - (C.Rel n1, C.Rel n2) -> n1 = n2 - | (C.Var uri1, C.Var uri2) -> U.eq uri1 uri2 - | (C.Meta n1, C.Meta n2) -> n1 = n2 - | (C.Sort s1, C.Sort s2) -> true (*CSC da finire con gli universi *) - | (C.Prod (_,s1,t1), C.Prod(_,s2,t2)) -> - aux s1 s2 && aux t1 t2 - | (C.Lambda (_,s1,t1), C.Lambda(_,s2,t2)) -> - aux s1 s2 && aux t1 t2 - | (C.Appl l1, C.Appl l2) -> - (try - List.fold_right2 (fun x y b -> aux x y && b) l1 l2 true - with - Invalid_argument _ -> false - ) - | (C.Const (uri1,_), C.Const (uri2,_)) -> - U.eq uri1 uri2 - | (C.MutInd (uri1,k1,i1), C.MutInd (uri2,k2,i2)) -> - U.eq uri1 uri2 && i1 = i2 - | (C.MutConstruct (uri1,_,i1,j1), C.MutConstruct (uri2,_,i2,j2)) -> - U.eq uri1 uri2 && i1 = i2 && j1 = j2 - | (C.MutCase (uri1,_,i1,outtype1,term1,pl1), - C.MutCase (uri2,_,i2,outtype2,term2,pl2)) -> - (* aux outtype1 outtype2 should be true if aux pl1 pl2 *) - U.eq uri1 uri2 && i1 = i2 && aux outtype1 outtype2 && - aux term1 term2 && - List.fold_right2 (fun x y b -> b && aux x y) pl1 pl2 true - | (C.Fix (i1,fl1), C.Fix (i2,fl2)) -> - i1 = i2 && - List.fold_right2 - (fun (_,recindex1,ty1,bo1) (_,recindex2,ty2,bo2) b -> - b && recindex1 = recindex2 && aux ty1 ty2 && aux bo1 bo2) - fl1 fl2 true - | (C.CoFix (i1,fl1), C.CoFix (i2,fl2)) -> - i1 = i2 && - List.fold_right2 - (fun (_,ty1,bo1) (_,ty2,bo2) b -> - b && aux ty1 ty2 && aux bo1 bo2) - fl1 fl2 true - | (_,_) -> false - in - if aux2 t1 t2 then true - else aux2 (whd t1) (whd t2) -in - aux -;; - - - - - - - - - - -