X-Git-Url: http://matita.cs.unibo.it/gitweb/?p=helm.git;a=blobdiff_plain;f=helm%2Focaml%2Ftactics%2Finversion.ml;fp=helm%2Focaml%2Ftactics%2Finversion.ml;h=6b563fe6a0fae9451f2e7a5a0f2da9c85e54910e;hp=0000000000000000000000000000000000000000;hb=792b5d29ebae8f917043d9dd226692919b5d6ca1;hpb=a14a8c7637fd0b95e9d4deccb20c6abc98e8f953 diff --git a/helm/ocaml/tactics/inversion.ml b/helm/ocaml/tactics/inversion.ml new file mode 100644 index 000000000..6b563fe6a --- /dev/null +++ b/helm/ocaml/tactics/inversion.ml @@ -0,0 +1,253 @@ +(* Copyright (C) 2002, HELM Team. + * + * This file is part of HELM, an Hypertextual, Electronic + * Library of Mathematics, developed at the Computer Science + * Department, University of Bologna, Italy. + * + * HELM is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * as published by the Free Software Foundation; either version 2 + * of the License, or (at your option) any later version. +* + * HELM is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with HELM; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place - Suite 330, Boston, + * MA 02111-1307, USA. + * + * For details, see the HELM World-Wide-Web page, + * http://cs.unibo.it/helm/. + *) + +(* $Id$ *) + +exception TheTypeOfTheCurrentGoalIsAMetaICannotChooseTheRightElimiantionPrinciple +exception NotAnInductiveTypeToEliminate + +let debug = false;; +let debug_print = + fun msg -> if debug then prerr_endline (Lazy.force msg) else () + + +let inside_obj = function + | Cic.InductiveDefinition (l,params, nleft, _) -> + (l,params,nleft) + | _ -> raise (Invalid_argument "Errore in inside_obj") + +let term_to_list = function + | Cic.Appl l -> l + | _ -> raise (Invalid_argument "Errore in term_to_list") + + +let rec baseuri_of_term = function + | Cic.Appl l -> baseuri_of_term (List.hd l) + | Cic.MutInd (baseuri, tyno, []) -> baseuri + | _ -> raise (Invalid_argument "baseuri_of_term") + + +(* prende il numero dei parametri sinistri, la lista dei parametri, la lista +dei tipi dei parametri, il tipo del GOAL e costruisce il termine per la cut +ossia DX1 = DX1 -> ... DXn=DXn -> GOALTY *) + +let rec foo_cut nleft l param_ty_l body uri_of_eq = + if nleft > 0 then foo_cut (nleft-1) (List.tl l) (List.tl param_ty_l) body + uri_of_eq + else match l with + | hd::tl -> Cic.Prod (Cic.Anonymous, Cic.Appl[Cic.MutInd (uri_of_eq ,0,[]); + (List.hd param_ty_l) ; hd; hd], foo_cut nleft + (List.map (CicSubstitution.lift 1) tl) (List.tl param_ty_l) + (CicSubstitution.lift 1 body) uri_of_eq ) + | [] -> body + ;; + +(* da una catena di prod costruisce una lista dei termini che lo compongono.*) +let rec list_of_prod term = +match term with + | Cic.Prod (Cic.Anonymous,src,tgt) -> [src] @ (list_of_prod tgt) + | _ -> [term] +;; + + +let rec cut_first n l = + if n>0 then + match l with + | hd::tl -> cut_first (n-1) tl + | [] -> [] + else l +;; + + +let rec cut_last l = +match l with + | hd::tl when tl != [] -> hd:: (cut_last tl) + | _ -> [] +;; + + +let foo_appl nleft nright_consno term uri = + let l = [] in + let a = ref l in + for n = 1 to nleft do + a := !a @ [(Cic.Implicit None)] + done; + a:= !a @ [term]; + for n = 1 to nright_consno do + a := !a @ [(Cic.Implicit None)] + done; + Cic.Appl ([Cic.Const(uri,[])] @ !a @ [Cic.Rel 1]) (*L'ipotesi e' sempre Rel 1. (?) *) +;; + + +let rec foo_prod nright param_ty_l l l2 base_rel body uri_of_eq nleft termty + isSetType term = + match param_ty_l with + | hd::tl -> Cic.Prod ( + Cic.Anonymous, + Cic.Appl[Cic.MutInd(uri_of_eq,0,[]); hd; (List.hd l); Cic.Rel base_rel], + foo_prod (nright-1) tl (List.map (CicSubstitution.lift 1) (List.tl l)) + (List.map (CicSubstitution.lift 1) l2) + base_rel (CicSubstitution.lift 1 body) + uri_of_eq nleft (CicSubstitution.lift 1 termty) + isSetType (CicSubstitution.lift 1 term)) + | [] -> ProofEngineReduction.replace_lifting + ~equality:(ProofEngineReduction.alpha_equivalence) + ~what: (if isSetType + then ((cut_first (1+nleft) (term_to_list termty) ) @ [term] ) + else (cut_first (1+nleft) (term_to_list termty) ) ) + ~with_what: (List.map (CicSubstitution.lift (-1)) l2) + ~where:body +(*TODO lo stesso sottotermine di body puo' essere sia sx che dx!*) +;; + +let rec foo_lambda nright param_ty_l nright_ param_ty_l_ l l2 base_rel body + uri_of_eq nleft termty isSetType ty_indty term = + (*assert nright >0 *) + match param_ty_l with + | hd::tl ->Cic.Lambda ( + (Cic.Name ("lambda" ^ (string_of_int nright))), + hd, (* typ *) + foo_lambda (nright-1) tl nright_ param_ty_l_ + (List.map (CicSubstitution.lift 1) l) + (List.map (CicSubstitution.lift 1) (l2 @ [Cic.Rel 1])) + base_rel (CicSubstitution.lift 1 body) + uri_of_eq nleft + (CicSubstitution.lift 1 termty) + isSetType ty_indty + (CicSubstitution.lift 1 term)) + | [] when isSetType -> Cic.Lambda ( + (Cic.Name ("lambda" ^ (string_of_int nright))), + (ProofEngineReduction.replace_lifting + ~equality:(ProofEngineReduction.alpha_equivalence) + ~what: (cut_first (1+nleft) (term_to_list termty) ) + ~with_what: (List.map (CicSubstitution.lift (-1)) l2) + ~where:termty), (* tipo di H con i parametri destri sostituiti *) + foo_prod nright_ param_ty_l_ (List.map (CicSubstitution.lift 1) l) + (List.map (CicSubstitution.lift 1) (l2 @ [Cic.Rel 1])) + (base_rel+1) (CicSubstitution.lift 1 body) + uri_of_eq nleft + (CicSubstitution.lift 1 termty) isSetType + (CicSubstitution.lift 1 term)) + | [] -> foo_prod nright_ param_ty_l_ l l2 base_rel body uri_of_eq nleft + termty isSetType term +;; + +let inversion_tac ~term = + let module T = CicTypeChecker in + let module R = CicReduction in + let module C = Cic in + let module P = PrimitiveTactics in + let module PET = ProofEngineTypes in + let module PEH = ProofEngineHelpers in + let inversion_tac ~term (proof, goal) = + let (_,metasenv,_,_) = proof in + let metano,context,ty = CicUtil.lookup_meta goal metasenv in + let (newproof, metasenv') = PEH.subst_meta_in_proof proof metano term [] in + let uri_of_eq = HelmLibraryObjects.Logic.eq_URI in + + (* dall'indice che indentifica il goal nel metasenv, ritorna il suo tipo, che + e' la terza componente della relativa congettura *) + let (_,_,body) = CicUtil.lookup_meta goal metasenv in + (* estrae il tipo del termine(ipotesi) oggetto di inversion, + di solito un Cic.Appl *) + let termty,_ = T.type_of_aux' metasenv context term CicUniv.empty_ugraph in + let uri = baseuri_of_term termty in + let o,_ = CicEnvironment.get_obj CicUniv.empty_ugraph uri in + let l,params,nleft = inside_obj o in + let (_,_,typeno,_) = + match termty with + C.MutInd (uri,typeno,exp_named_subst) -> (uri,exp_named_subst,typeno,[]) + | C.Appl ((C.MutInd (uri,typeno,exp_named_subst))::args) -> + (uri,exp_named_subst,typeno,args) + | _ -> raise NotAnInductiveTypeToEliminate + in + let eliminator_uri = + let buri = UriManager.buri_of_uri uri in + let name = + match o with + C.InductiveDefinition (tys,_,_,_) -> + let (name,_,_,_) = List.nth tys typeno in + name + |_ -> assert false + in + let ext = "_ind" in + UriManager.uri_of_string (buri ^ "/" ^ name ^ ext ^ ".con") + in + (* il tipo del tipo induttivo da cui viene l'ipotesi oggetto di inversione *) + let (_,_,ty_indty,cons_list) = (List.hd l) in + (*la lista di Cic.term ricavata dal tipo del tipo induttivo. *) + let param_ty_l = list_of_prod ty_indty in + let consno = List.length cons_list in + let nright= (List.length param_ty_l)- (nleft+1) in + let isSetType = ((Pervasives.compare + (List.nth param_ty_l ((List.length param_ty_l)-1)) + (Cic.Sort Cic.Prop)) != 0) + in + (* eliminiamo la testa di termty, in quanto e' il nome del predicato e non un parametro.*) + let cut_term = foo_cut nleft (List.tl (term_to_list termty)) + (list_of_prod ty_indty) body uri_of_eq in + (* cut DXn=DXn \to GOAL *) + let proof1,gl1 = PET.apply_tactic (P.cut_tac cut_term) (proof,goal) in + (* apply Hcut ; reflexivity (su tutti i goals aperti da apply_tac) *) + let proof2, gl2 = PET.apply_tactic + (Tacticals.then_ + ~start: (P.apply_tac (C.Rel 1)) (* apply Hcut *) + ~continuation: (EqualityTactics.reflexivity_tac) + ) (proof1, (List.hd gl1)) + in + (* apply (ledx_ind( lambda x. lambda y, ...)) *) + let (t1,metasenv,t3,t4) = proof2 in + let goal2 = List.hd (List.tl gl1) in + let (metano,context,_) = CicUtil.lookup_meta goal2 metasenv in + let cut_param_ty_l = (cut_first nleft (cut_last param_ty_l)) in + (* la lista dei soli parametri destri *) + let l= cut_first (1+nleft) (term_to_list termty) in + let lambda_t = foo_lambda nright cut_param_ty_l nright cut_param_ty_l l [] + nright body uri_of_eq nleft termty isSetType ty_indty term in + let t = foo_appl nleft (nright+consno) lambda_t eliminator_uri in + debug_print (lazy ("Lambda_t: " ^ (CicPp.ppterm t))); + debug_print (lazy ("Term: " ^ (CicPp.ppterm termty))); + debug_print (lazy ("Body: " ^ (CicPp.ppterm body))); + debug_print (lazy ("Right param: " ^ (CicPp.ppterm (Cic.Appl l)))); + + let (ref_t,_,metasenv'',_) = CicRefine.type_of_aux' metasenv context t + CicUniv.empty_ugraph + in + let proof2 = (t1,metasenv'',t3,t4) in + let proof3,gl3 = PET.apply_tactic (P.apply_tac ref_t) (proof2, goal2) in + let new_goals = ProofEngineHelpers.compare_metasenvs + ~oldmetasenv:metasenv ~newmetasenv:metasenv'' + in + let patched_new_goals = + let (_,metasenv''',_,_) = proof3 in + List.filter (function i -> List.exists (function (j,_,_) -> j=i) metasenv''') + new_goals @ gl3 + in + (*prerr_endline ("METASENV: " ^ CicMetaSubst.ppmetasenv metasenv []); DEBUG*) + (proof3, patched_new_goals) +in +ProofEngineTypes.mk_tactic (inversion_tac ~term) +;;