X-Git-Url: http://matita.cs.unibo.it/gitweb/?p=helm.git;a=blobdiff_plain;f=matita%2Fcontribs%2FLAMBDA-TYPES%2FLambdaDelta-1%2Fflt%2Fprops.ma;fp=matita%2Fcontribs%2FLAMBDA-TYPES%2FLambdaDelta-1%2Fflt%2Fprops.ma;h=20356f9467ea85ee5fe4c93ad6f98d18ed0c34f9;hp=0000000000000000000000000000000000000000;hb=f61af501fb4608cc4fb062a0864c774e677f0d76;hpb=58ae1809c352e71e7b5530dc41e2bfc834e1aef1 diff --git a/matita/contribs/LAMBDA-TYPES/LambdaDelta-1/flt/props.ma b/matita/contribs/LAMBDA-TYPES/LambdaDelta-1/flt/props.ma new file mode 100644 index 000000000..20356f946 --- /dev/null +++ b/matita/contribs/LAMBDA-TYPES/LambdaDelta-1/flt/props.ma @@ -0,0 +1,117 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| The HELM team. *) +(* ||A|| http://helm.cs.unibo.it *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU General Public License Version 2 *) +(* *) +(**************************************************************************) + +(* This file was automatically generated: do not edit *********************) + +include "LambdaDelta-1/flt/defs.ma". + +include "LambdaDelta-1/C/props.ma". + +theorem flt_thead_sx: + \forall (k: K).(\forall (c: C).(\forall (u: T).(\forall (t: T).(flt c u c +(THead k u t))))) +\def + \lambda (_: K).(\lambda (c: C).(\lambda (u: T).(\lambda (t: +T).(le_lt_plus_plus (cweight c) (cweight c) (tweight u) (S (plus (tweight u) +(tweight t))) (le_n (cweight c)) (le_n_S (tweight u) (plus (tweight u) +(tweight t)) (le_plus_l (tweight u) (tweight t))))))). + +theorem flt_thead_dx: + \forall (k: K).(\forall (c: C).(\forall (u: T).(\forall (t: T).(flt c t c +(THead k u t))))) +\def + \lambda (_: K).(\lambda (c: C).(\lambda (u: T).(\lambda (t: +T).(le_lt_plus_plus (cweight c) (cweight c) (tweight t) (S (plus (tweight u) +(tweight t))) (le_n (cweight c)) (le_n_S (tweight t) (plus (tweight u) +(tweight t)) (le_plus_r (tweight u) (tweight t))))))). + +theorem flt_shift: + \forall (k: K).(\forall (c: C).(\forall (u: T).(\forall (t: T).(flt (CHead c +k u) t c (THead k u t))))) +\def + \lambda (_: K).(\lambda (c: C).(\lambda (u: T).(\lambda (t: T).(eq_ind nat +(S (plus (cweight c) (plus (tweight u) (tweight t)))) (\lambda (n: nat).(lt +(plus (plus (cweight c) (tweight u)) (tweight t)) n)) (eq_ind_r nat (plus +(plus (cweight c) (tweight u)) (tweight t)) (\lambda (n: nat).(lt (plus (plus +(cweight c) (tweight u)) (tweight t)) (S n))) (le_n (S (plus (plus (cweight +c) (tweight u)) (tweight t)))) (plus (cweight c) (plus (tweight u) (tweight +t))) (plus_assoc_l (cweight c) (tweight u) (tweight t))) (plus (cweight c) (S +(plus (tweight u) (tweight t)))) (plus_n_Sm (cweight c) (plus (tweight u) +(tweight t))))))). + +theorem flt_arith0: + \forall (k: K).(\forall (c: C).(\forall (t: T).(\forall (i: nat).(flt c t +(CHead c k t) (TLRef i))))) +\def + \lambda (_: K).(\lambda (c: C).(\lambda (t: T).(\lambda (_: +nat).(lt_x_plus_x_Sy (plus (cweight c) (tweight t)) O)))). + +theorem flt_arith1: + \forall (k1: K).(\forall (c1: C).(\forall (c2: C).(\forall (t1: T).((cle +(CHead c1 k1 t1) c2) \to (\forall (k2: K).(\forall (t2: T).(\forall (i: +nat).(flt c1 t1 (CHead c2 k2 t2) (TLRef i))))))))) +\def + \lambda (_: K).(\lambda (c1: C).(\lambda (c2: C).(\lambda (t1: T).(\lambda +(H: (le (plus (cweight c1) (tweight t1)) (cweight c2))).(\lambda (_: +K).(\lambda (t2: T).(\lambda (_: nat).(le_lt_trans (plus (cweight c1) +(tweight t1)) (cweight c2) (plus (plus (cweight c2) (tweight t2)) (S O)) H +(eq_ind_r nat (plus (S O) (plus (cweight c2) (tweight t2))) (\lambda (n: +nat).(lt (cweight c2) n)) (le_lt_n_Sm (cweight c2) (plus (cweight c2) +(tweight t2)) (le_plus_l (cweight c2) (tweight t2))) (plus (plus (cweight c2) +(tweight t2)) (S O)) (plus_sym (plus (cweight c2) (tweight t2)) (S +O))))))))))). + +theorem flt_arith2: + \forall (c1: C).(\forall (c2: C).(\forall (t1: T).(\forall (i: nat).((flt c1 +t1 c2 (TLRef i)) \to (\forall (k2: K).(\forall (t2: T).(\forall (j: nat).(flt +c1 t1 (CHead c2 k2 t2) (TLRef j))))))))) +\def + \lambda (c1: C).(\lambda (c2: C).(\lambda (t1: T).(\lambda (_: nat).(\lambda +(H: (lt (plus (cweight c1) (tweight t1)) (plus (cweight c2) (S O)))).(\lambda +(_: K).(\lambda (t2: T).(\lambda (_: nat).(lt_le_trans (plus (cweight c1) +(tweight t1)) (plus (cweight c2) (S O)) (plus (plus (cweight c2) (tweight +t2)) (S O)) H (le_plus_plus (cweight c2) (plus (cweight c2) (tweight t2)) (S +O) (S O) (le_plus_l (cweight c2) (tweight t2)) (le_n (S O))))))))))). + +theorem flt_wf__q_ind: + \forall (P: ((C \to (T \to Prop)))).(((\forall (n: nat).((\lambda (P0: ((C +\to (T \to Prop)))).(\lambda (n0: nat).(\forall (c: C).(\forall (t: T).((eq +nat (fweight c t) n0) \to (P0 c t)))))) P n))) \to (\forall (c: C).(\forall +(t: T).(P c t)))) +\def + let Q \def (\lambda (P: ((C \to (T \to Prop)))).(\lambda (n: nat).(\forall +(c: C).(\forall (t: T).((eq nat (fweight c t) n) \to (P c t)))))) in (\lambda +(P: ((C \to (T \to Prop)))).(\lambda (H: ((\forall (n: nat).(\forall (c: +C).(\forall (t: T).((eq nat (fweight c t) n) \to (P c t))))))).(\lambda (c: +C).(\lambda (t: T).(H (fweight c t) c t (refl_equal nat (fweight c t))))))). + +theorem flt_wf_ind: + \forall (P: ((C \to (T \to Prop)))).(((\forall (c2: C).(\forall (t2: +T).(((\forall (c1: C).(\forall (t1: T).((flt c1 t1 c2 t2) \to (P c1 t1))))) +\to (P c2 t2))))) \to (\forall (c: C).(\forall (t: T).(P c t)))) +\def + let Q \def (\lambda (P: ((C \to (T \to Prop)))).(\lambda (n: nat).(\forall +(c: C).(\forall (t: T).((eq nat (fweight c t) n) \to (P c t)))))) in (\lambda +(P: ((C \to (T \to Prop)))).(\lambda (H: ((\forall (c2: C).(\forall (t2: +T).(((\forall (c1: C).(\forall (t1: T).((flt c1 t1 c2 t2) \to (P c1 t1))))) +\to (P c2 t2)))))).(\lambda (c: C).(\lambda (t: T).(flt_wf__q_ind P (\lambda +(n: nat).(lt_wf_ind n (Q P) (\lambda (n0: nat).(\lambda (H0: ((\forall (m: +nat).((lt m n0) \to (Q P m))))).(\lambda (c0: C).(\lambda (t0: T).(\lambda +(H1: (eq nat (fweight c0 t0) n0)).(let H2 \def (eq_ind_r nat n0 (\lambda (n1: +nat).(\forall (m: nat).((lt m n1) \to (\forall (c1: C).(\forall (t1: T).((eq +nat (fweight c1 t1) m) \to (P c1 t1))))))) H0 (fweight c0 t0) H1) in (H c0 t0 +(\lambda (c1: C).(\lambda (t1: T).(\lambda (H3: (flt c1 t1 c0 t0)).(H2 +(fweight c1 t1) H3 c1 t1 (refl_equal nat (fweight c1 t1))))))))))))))) c +t))))). +