X-Git-Url: http://matita.cs.unibo.it/gitweb/?p=helm.git;a=blobdiff_plain;f=matita%2Fcontribs%2FLAMBDA-TYPES%2FLambdaDelta-1%2Fnf2%2Ffwd.ma;fp=matita%2Fcontribs%2FLAMBDA-TYPES%2FLambdaDelta-1%2Fnf2%2Ffwd.ma;h=6549ddb52297482ab09bb81948bae931dd3d4771;hp=0000000000000000000000000000000000000000;hb=f61af501fb4608cc4fb062a0864c774e677f0d76;hpb=58ae1809c352e71e7b5530dc41e2bfc834e1aef1 diff --git a/matita/contribs/LAMBDA-TYPES/LambdaDelta-1/nf2/fwd.ma b/matita/contribs/LAMBDA-TYPES/LambdaDelta-1/nf2/fwd.ma new file mode 100644 index 000000000..6549ddb52 --- /dev/null +++ b/matita/contribs/LAMBDA-TYPES/LambdaDelta-1/nf2/fwd.ma @@ -0,0 +1,195 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| The HELM team. *) +(* ||A|| http://helm.cs.unibo.it *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU General Public License Version 2 *) +(* *) +(**************************************************************************) + +(* This file was automatically generated: do not edit *********************) + +include "LambdaDelta-1/nf2/defs.ma". + +include "LambdaDelta-1/pr2/clen.ma". + +include "LambdaDelta-1/subst0/dec.ma". + +include "LambdaDelta-1/T/props.ma". + +theorem nf2_gen_lref: + \forall (c: C).(\forall (d: C).(\forall (u: T).(\forall (i: nat).((getl i c +(CHead d (Bind Abbr) u)) \to ((nf2 c (TLRef i)) \to (\forall (P: Prop).P)))))) +\def + \lambda (c: C).(\lambda (d: C).(\lambda (u: T).(\lambda (i: nat).(\lambda +(H: (getl i c (CHead d (Bind Abbr) u))).(\lambda (H0: ((\forall (t2: T).((pr2 +c (TLRef i) t2) \to (eq T (TLRef i) t2))))).(\lambda (P: +Prop).(lift_gen_lref_false (S i) O i (le_O_n i) (le_n (plus O (S i))) u (H0 +(lift (S i) O u) (pr2_delta c d u i H (TLRef i) (TLRef i) (pr0_refl (TLRef +i)) (lift (S i) O u) (subst0_lref u i))) P))))))). + +theorem nf2_gen_abst: + \forall (c: C).(\forall (u: T).(\forall (t: T).((nf2 c (THead (Bind Abst) u +t)) \to (land (nf2 c u) (nf2 (CHead c (Bind Abst) u) t))))) +\def + \lambda (c: C).(\lambda (u: T).(\lambda (t: T).(\lambda (H: ((\forall (t2: +T).((pr2 c (THead (Bind Abst) u t) t2) \to (eq T (THead (Bind Abst) u t) +t2))))).(conj (\forall (t2: T).((pr2 c u t2) \to (eq T u t2))) (\forall (t2: +T).((pr2 (CHead c (Bind Abst) u) t t2) \to (eq T t t2))) (\lambda (t2: +T).(\lambda (H0: (pr2 c u t2)).(let H1 \def (f_equal T T (\lambda (e: +T).(match e in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow u | +(TLRef _) \Rightarrow u | (THead _ t0 _) \Rightarrow t0])) (THead (Bind Abst) +u t) (THead (Bind Abst) t2 t) (H (THead (Bind Abst) t2 t) (pr2_head_1 c u t2 +H0 (Bind Abst) t))) in (let H2 \def (eq_ind_r T t2 (\lambda (t0: T).(pr2 c u +t0)) H0 u H1) in (eq_ind T u (\lambda (t0: T).(eq T u t0)) (refl_equal T u) +t2 H1))))) (\lambda (t2: T).(\lambda (H0: (pr2 (CHead c (Bind Abst) u) t +t2)).(let H1 \def (f_equal T T (\lambda (e: T).(match e in T return (\lambda +(_: T).T) with [(TSort _) \Rightarrow t | (TLRef _) \Rightarrow t | (THead _ +_ t0) \Rightarrow t0])) (THead (Bind Abst) u t) (THead (Bind Abst) u t2) (H +(THead (Bind Abst) u t2) (let H_y \def (pr2_gen_cbind Abst c u t t2 H0) in +H_y))) in (let H2 \def (eq_ind_r T t2 (\lambda (t0: T).(pr2 (CHead c (Bind +Abst) u) t t0)) H0 t H1) in (eq_ind T t (\lambda (t0: T).(eq T t t0)) +(refl_equal T t) t2 H1))))))))). + +theorem nf2_gen_cast: + \forall (c: C).(\forall (u: T).(\forall (t: T).((nf2 c (THead (Flat Cast) u +t)) \to (\forall (P: Prop).P)))) +\def + \lambda (c: C).(\lambda (u: T).(\lambda (t: T).(\lambda (H: (nf2 c (THead +(Flat Cast) u t))).(\lambda (P: Prop).(thead_x_y_y (Flat Cast) u t (H t +(pr2_free c (THead (Flat Cast) u t) t (pr0_tau t t (pr0_refl t) u))) P))))). + +theorem nf2_gen_beta: + \forall (c: C).(\forall (u: T).(\forall (v: T).(\forall (t: T).((nf2 c +(THead (Flat Appl) u (THead (Bind Abst) v t))) \to (\forall (P: Prop).P))))) +\def + \lambda (c: C).(\lambda (u: T).(\lambda (v: T).(\lambda (t: T).(\lambda (H: +((\forall (t2: T).((pr2 c (THead (Flat Appl) u (THead (Bind Abst) v t)) t2) +\to (eq T (THead (Flat Appl) u (THead (Bind Abst) v t)) t2))))).(\lambda (P: +Prop).(let H0 \def (eq_ind T (THead (Flat Appl) u (THead (Bind Abst) v t)) +(\lambda (ee: T).(match ee in T return (\lambda (_: T).Prop) with [(TSort _) +\Rightarrow False | (TLRef _) \Rightarrow False | (THead k _ _) \Rightarrow +(match k in K return (\lambda (_: K).Prop) with [(Bind _) \Rightarrow False | +(Flat _) \Rightarrow True])])) I (THead (Bind Abbr) u t) (H (THead (Bind +Abbr) u t) (pr2_free c (THead (Flat Appl) u (THead (Bind Abst) v t)) (THead +(Bind Abbr) u t) (pr0_beta v u u (pr0_refl u) t t (pr0_refl t))))) in +(False_ind P H0))))))). + +theorem nf2_gen_flat: + \forall (f: F).(\forall (c: C).(\forall (u: T).(\forall (t: T).((nf2 c +(THead (Flat f) u t)) \to (land (nf2 c u) (nf2 c t)))))) +\def + \lambda (f: F).(\lambda (c: C).(\lambda (u: T).(\lambda (t: T).(\lambda (H: +((\forall (t2: T).((pr2 c (THead (Flat f) u t) t2) \to (eq T (THead (Flat f) +u t) t2))))).(conj (\forall (t2: T).((pr2 c u t2) \to (eq T u t2))) (\forall +(t2: T).((pr2 c t t2) \to (eq T t t2))) (\lambda (t2: T).(\lambda (H0: (pr2 c +u t2)).(let H1 \def (f_equal T T (\lambda (e: T).(match e in T return +(\lambda (_: T).T) with [(TSort _) \Rightarrow u | (TLRef _) \Rightarrow u | +(THead _ t0 _) \Rightarrow t0])) (THead (Flat f) u t) (THead (Flat f) t2 t) +(H (THead (Flat f) t2 t) (pr2_head_1 c u t2 H0 (Flat f) t))) in H1))) +(\lambda (t2: T).(\lambda (H0: (pr2 c t t2)).(let H1 \def (f_equal T T +(\lambda (e: T).(match e in T return (\lambda (_: T).T) with [(TSort _) +\Rightarrow t | (TLRef _) \Rightarrow t | (THead _ _ t0) \Rightarrow t0])) +(THead (Flat f) u t) (THead (Flat f) u t2) (H (THead (Flat f) u t2) +(pr2_head_2 c u t t2 (Flat f) (pr2_cflat c t t2 H0 f u)))) in H1)))))))). + +theorem nf2_gen__nf2_gen_aux: + \forall (b: B).(\forall (x: T).(\forall (u: T).(\forall (d: nat).((eq T +(THead (Bind b) u (lift (S O) d x)) x) \to (\forall (P: Prop).P))))) +\def + \lambda (b: B).(\lambda (x: T).(T_ind (\lambda (t: T).(\forall (u: +T).(\forall (d: nat).((eq T (THead (Bind b) u (lift (S O) d t)) t) \to +(\forall (P: Prop).P))))) (\lambda (n: nat).(\lambda (u: T).(\lambda (d: +nat).(\lambda (H: (eq T (THead (Bind b) u (lift (S O) d (TSort n))) (TSort +n))).(\lambda (P: Prop).(let H0 \def (eq_ind T (THead (Bind b) u (lift (S O) +d (TSort n))) (\lambda (ee: T).(match ee in T return (\lambda (_: T).Prop) +with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | (THead _ _ +_) \Rightarrow True])) I (TSort n) H) in (False_ind P H0))))))) (\lambda (n: +nat).(\lambda (u: T).(\lambda (d: nat).(\lambda (H: (eq T (THead (Bind b) u +(lift (S O) d (TLRef n))) (TLRef n))).(\lambda (P: Prop).(let H0 \def (eq_ind +T (THead (Bind b) u (lift (S O) d (TLRef n))) (\lambda (ee: T).(match ee in T +return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow False | (TLRef _) +\Rightarrow False | (THead _ _ _) \Rightarrow True])) I (TLRef n) H) in +(False_ind P H0))))))) (\lambda (k: K).(\lambda (t: T).(\lambda (_: ((\forall +(u: T).(\forall (d: nat).((eq T (THead (Bind b) u (lift (S O) d t)) t) \to +(\forall (P: Prop).P)))))).(\lambda (t0: T).(\lambda (H0: ((\forall (u: +T).(\forall (d: nat).((eq T (THead (Bind b) u (lift (S O) d t0)) t0) \to +(\forall (P: Prop).P)))))).(\lambda (u: T).(\lambda (d: nat).(\lambda (H1: +(eq T (THead (Bind b) u (lift (S O) d (THead k t t0))) (THead k t +t0))).(\lambda (P: Prop).(let H2 \def (f_equal T K (\lambda (e: T).(match e +in T return (\lambda (_: T).K) with [(TSort _) \Rightarrow (Bind b) | (TLRef +_) \Rightarrow (Bind b) | (THead k0 _ _) \Rightarrow k0])) (THead (Bind b) u +(lift (S O) d (THead k t t0))) (THead k t t0) H1) in ((let H3 \def (f_equal T +T (\lambda (e: T).(match e in T return (\lambda (_: T).T) with [(TSort _) +\Rightarrow u | (TLRef _) \Rightarrow u | (THead _ t1 _) \Rightarrow t1])) +(THead (Bind b) u (lift (S O) d (THead k t t0))) (THead k t t0) H1) in ((let +H4 \def (f_equal T T (\lambda (e: T).(match e in T return (\lambda (_: T).T) +with [(TSort _) \Rightarrow (THead k ((let rec lref_map (f: ((nat \to nat))) +(d0: nat) (t1: T) on t1: T \def (match t1 with [(TSort n) \Rightarrow (TSort +n) | (TLRef i) \Rightarrow (TLRef (match (blt i d0) with [true \Rightarrow i +| false \Rightarrow (f i)])) | (THead k0 u0 t2) \Rightarrow (THead k0 +(lref_map f d0 u0) (lref_map f (s k0 d0) t2))]) in lref_map) (\lambda (x0: +nat).(plus x0 (S O))) d t) ((let rec lref_map (f: ((nat \to nat))) (d0: nat) +(t1: T) on t1: T \def (match t1 with [(TSort n) \Rightarrow (TSort n) | +(TLRef i) \Rightarrow (TLRef (match (blt i d0) with [true \Rightarrow i | +false \Rightarrow (f i)])) | (THead k0 u0 t2) \Rightarrow (THead k0 (lref_map +f d0 u0) (lref_map f (s k0 d0) t2))]) in lref_map) (\lambda (x0: nat).(plus +x0 (S O))) (s k d) t0)) | (TLRef _) \Rightarrow (THead k ((let rec lref_map +(f: ((nat \to nat))) (d0: nat) (t1: T) on t1: T \def (match t1 with [(TSort +n) \Rightarrow (TSort n) | (TLRef i) \Rightarrow (TLRef (match (blt i d0) +with [true \Rightarrow i | false \Rightarrow (f i)])) | (THead k0 u0 t2) +\Rightarrow (THead k0 (lref_map f d0 u0) (lref_map f (s k0 d0) t2))]) in +lref_map) (\lambda (x0: nat).(plus x0 (S O))) d t) ((let rec lref_map (f: +((nat \to nat))) (d0: nat) (t1: T) on t1: T \def (match t1 with [(TSort n) +\Rightarrow (TSort n) | (TLRef i) \Rightarrow (TLRef (match (blt i d0) with +[true \Rightarrow i | false \Rightarrow (f i)])) | (THead k0 u0 t2) +\Rightarrow (THead k0 (lref_map f d0 u0) (lref_map f (s k0 d0) t2))]) in +lref_map) (\lambda (x0: nat).(plus x0 (S O))) (s k d) t0)) | (THead _ _ t1) +\Rightarrow t1])) (THead (Bind b) u (lift (S O) d (THead k t t0))) (THead k t +t0) H1) in (\lambda (_: (eq T u t)).(\lambda (H6: (eq K (Bind b) k)).(let H7 +\def (eq_ind_r K k (\lambda (k0: K).(eq T (lift (S O) d (THead k0 t t0)) t0)) +H4 (Bind b) H6) in (let H8 \def (eq_ind T (lift (S O) d (THead (Bind b) t +t0)) (\lambda (t1: T).(eq T t1 t0)) H7 (THead (Bind b) (lift (S O) d t) (lift +(S O) (S d) t0)) (lift_bind b t t0 (S O) d)) in (H0 (lift (S O) d t) (S d) H8 +P)))))) H3)) H2))))))))))) x)). + +theorem nf2_gen_abbr: + \forall (c: C).(\forall (u: T).(\forall (t: T).((nf2 c (THead (Bind Abbr) u +t)) \to (\forall (P: Prop).P)))) +\def + \lambda (c: C).(\lambda (u: T).(\lambda (t: T).(\lambda (H: ((\forall (t2: +T).((pr2 c (THead (Bind Abbr) u t) t2) \to (eq T (THead (Bind Abbr) u t) +t2))))).(\lambda (P: Prop).(let H_x \def (dnf_dec u t O) in (let H0 \def H_x +in (ex_ind T (\lambda (v: T).(or (subst0 O u t (lift (S O) O v)) (eq T t +(lift (S O) O v)))) P (\lambda (x: T).(\lambda (H1: (or (subst0 O u t (lift +(S O) O x)) (eq T t (lift (S O) O x)))).(or_ind (subst0 O u t (lift (S O) O +x)) (eq T t (lift (S O) O x)) P (\lambda (H2: (subst0 O u t (lift (S O) O +x))).(let H3 \def (f_equal T T (\lambda (e: T).(match e in T return (\lambda +(_: T).T) with [(TSort _) \Rightarrow t | (TLRef _) \Rightarrow t | (THead _ +_ t0) \Rightarrow t0])) (THead (Bind Abbr) u t) (THead (Bind Abbr) u (lift (S +O) O x)) (H (THead (Bind Abbr) u (lift (S O) O x)) (pr2_free c (THead (Bind +Abbr) u t) (THead (Bind Abbr) u (lift (S O) O x)) (pr0_delta u u (pr0_refl u) +t t (pr0_refl t) (lift (S O) O x) H2)))) in (let H4 \def (eq_ind T t (\lambda +(t0: T).(subst0 O u t0 (lift (S O) O x))) H2 (lift (S O) O x) H3) in +(subst0_refl u (lift (S O) O x) O H4 P)))) (\lambda (H2: (eq T t (lift (S O) +O x))).(let H3 \def (eq_ind T t (\lambda (t0: T).(\forall (t2: T).((pr2 c +(THead (Bind Abbr) u t0) t2) \to (eq T (THead (Bind Abbr) u t0) t2)))) H +(lift (S O) O x) H2) in (nf2_gen__nf2_gen_aux Abbr x u O (H3 x (pr2_free c +(THead (Bind Abbr) u (lift (S O) O x)) x (pr0_zeta Abbr not_abbr_abst x x +(pr0_refl x) u))) P))) H1))) H0))))))). + +theorem nf2_gen_void: + \forall (c: C).(\forall (u: T).(\forall (t: T).((nf2 c (THead (Bind Void) u +(lift (S O) O t))) \to (\forall (P: Prop).P)))) +\def + \lambda (c: C).(\lambda (u: T).(\lambda (t: T).(\lambda (H: ((\forall (t2: +T).((pr2 c (THead (Bind Void) u (lift (S O) O t)) t2) \to (eq T (THead (Bind +Void) u (lift (S O) O t)) t2))))).(\lambda (P: Prop).(nf2_gen__nf2_gen_aux +Void t u O (H t (pr2_free c (THead (Bind Void) u (lift (S O) O t)) t +(pr0_zeta Void not_void_abst t t (pr0_refl t) u))) P))))). +