X-Git-Url: http://matita.cs.unibo.it/gitweb/?p=helm.git;a=blobdiff_plain;f=matita%2Fcontribs%2FLAMBDA-TYPES%2FLegacy-1%2Fcoq%2Fprops.ma;fp=matita%2Fcontribs%2FLAMBDA-TYPES%2FLegacy-1%2Fcoq%2Fprops.ma;h=e9d29ff6dcdcb5c3e425181b7308bb110e2ddc43;hp=0000000000000000000000000000000000000000;hb=f61af501fb4608cc4fb062a0864c774e677f0d76;hpb=58ae1809c352e71e7b5530dc41e2bfc834e1aef1 diff --git a/matita/contribs/LAMBDA-TYPES/Legacy-1/coq/props.ma b/matita/contribs/LAMBDA-TYPES/Legacy-1/coq/props.ma new file mode 100644 index 000000000..e9d29ff6d --- /dev/null +++ b/matita/contribs/LAMBDA-TYPES/Legacy-1/coq/props.ma @@ -0,0 +1,598 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| The HELM team. *) +(* ||A|| http://helm.cs.unibo.it *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU General Public License Version 2 *) +(* *) +(**************************************************************************) + +(* This file was automatically generated: do not edit *********************) + +include "Legacy-1/coq/defs.ma". + +theorem f_equal: + \forall (A: Set).(\forall (B: Set).(\forall (f: ((A \to B))).(\forall (x: +A).(\forall (y: A).((eq A x y) \to (eq B (f x) (f y))))))) +\def + \lambda (A: Set).(\lambda (B: Set).(\lambda (f: ((A \to B))).(\lambda (x: +A).(\lambda (y: A).(\lambda (H: (eq A x y)).(eq_ind A x (\lambda (a: A).(eq B +(f x) (f a))) (refl_equal B (f x)) y H)))))). + +theorem f_equal2: + \forall (A1: Set).(\forall (A2: Set).(\forall (B: Set).(\forall (f: ((A1 \to +(A2 \to B)))).(\forall (x1: A1).(\forall (y1: A1).(\forall (x2: A2).(\forall +(y2: A2).((eq A1 x1 y1) \to ((eq A2 x2 y2) \to (eq B (f x1 x2) (f y1 +y2))))))))))) +\def + \lambda (A1: Set).(\lambda (A2: Set).(\lambda (B: Set).(\lambda (f: ((A1 \to +(A2 \to B)))).(\lambda (x1: A1).(\lambda (y1: A1).(\lambda (x2: A2).(\lambda +(y2: A2).(\lambda (H: (eq A1 x1 y1)).(eq_ind A1 x1 (\lambda (a: A1).((eq A2 +x2 y2) \to (eq B (f x1 x2) (f a y2)))) (\lambda (H0: (eq A2 x2 y2)).(eq_ind +A2 x2 (\lambda (a: A2).(eq B (f x1 x2) (f x1 a))) (refl_equal B (f x1 x2)) y2 +H0)) y1 H))))))))). + +theorem f_equal3: + \forall (A1: Set).(\forall (A2: Set).(\forall (A3: Set).(\forall (B: +Set).(\forall (f: ((A1 \to (A2 \to (A3 \to B))))).(\forall (x1: A1).(\forall +(y1: A1).(\forall (x2: A2).(\forall (y2: A2).(\forall (x3: A3).(\forall (y3: +A3).((eq A1 x1 y1) \to ((eq A2 x2 y2) \to ((eq A3 x3 y3) \to (eq B (f x1 x2 +x3) (f y1 y2 y3))))))))))))))) +\def + \lambda (A1: Set).(\lambda (A2: Set).(\lambda (A3: Set).(\lambda (B: +Set).(\lambda (f: ((A1 \to (A2 \to (A3 \to B))))).(\lambda (x1: A1).(\lambda +(y1: A1).(\lambda (x2: A2).(\lambda (y2: A2).(\lambda (x3: A3).(\lambda (y3: +A3).(\lambda (H: (eq A1 x1 y1)).(eq_ind A1 x1 (\lambda (a: A1).((eq A2 x2 y2) +\to ((eq A3 x3 y3) \to (eq B (f x1 x2 x3) (f a y2 y3))))) (\lambda (H0: (eq +A2 x2 y2)).(eq_ind A2 x2 (\lambda (a: A2).((eq A3 x3 y3) \to (eq B (f x1 x2 +x3) (f x1 a y3)))) (\lambda (H1: (eq A3 x3 y3)).(eq_ind A3 x3 (\lambda (a: +A3).(eq B (f x1 x2 x3) (f x1 x2 a))) (refl_equal B (f x1 x2 x3)) y3 H1)) y2 +H0)) y1 H)))))))))))). + +theorem sym_eq: + \forall (A: Set).(\forall (x: A).(\forall (y: A).((eq A x y) \to (eq A y +x)))) +\def + \lambda (A: Set).(\lambda (x: A).(\lambda (y: A).(\lambda (H: (eq A x +y)).(eq_ind A x (\lambda (a: A).(eq A a x)) (refl_equal A x) y H)))). + +theorem eq_ind_r: + \forall (A: Set).(\forall (x: A).(\forall (P: ((A \to Prop))).((P x) \to +(\forall (y: A).((eq A y x) \to (P y)))))) +\def + \lambda (A: Set).(\lambda (x: A).(\lambda (P: ((A \to Prop))).(\lambda (H: +(P x)).(\lambda (y: A).(\lambda (H0: (eq A y x)).(match (sym_eq A y x H0) in +eq return (\lambda (a: A).(\lambda (_: (eq ? ? a)).(P a))) with [refl_equal +\Rightarrow H])))))). + +theorem trans_eq: + \forall (A: Set).(\forall (x: A).(\forall (y: A).(\forall (z: A).((eq A x y) +\to ((eq A y z) \to (eq A x z)))))) +\def + \lambda (A: Set).(\lambda (x: A).(\lambda (y: A).(\lambda (z: A).(\lambda +(H: (eq A x y)).(\lambda (H0: (eq A y z)).(eq_ind A y (\lambda (a: A).(eq A x +a)) H z H0)))))). + +theorem sym_not_eq: + \forall (A: Set).(\forall (x: A).(\forall (y: A).((not (eq A x y)) \to (not +(eq A y x))))) +\def + \lambda (A: Set).(\lambda (x: A).(\lambda (y: A).(\lambda (h1: (not (eq A x +y))).(\lambda (h2: (eq A y x)).(h1 (eq_ind A y (\lambda (a: A).(eq A a y)) +(refl_equal A y) x h2)))))). + +theorem nat_double_ind: + \forall (R: ((nat \to (nat \to Prop)))).(((\forall (n: nat).(R O n))) \to +(((\forall (n: nat).(R (S n) O))) \to (((\forall (n: nat).(\forall (m: +nat).((R n m) \to (R (S n) (S m)))))) \to (\forall (n: nat).(\forall (m: +nat).(R n m)))))) +\def + \lambda (R: ((nat \to (nat \to Prop)))).(\lambda (H: ((\forall (n: nat).(R O +n)))).(\lambda (H0: ((\forall (n: nat).(R (S n) O)))).(\lambda (H1: ((\forall +(n: nat).(\forall (m: nat).((R n m) \to (R (S n) (S m))))))).(\lambda (n: +nat).(nat_ind (\lambda (n0: nat).(\forall (m: nat).(R n0 m))) H (\lambda (n0: +nat).(\lambda (H2: ((\forall (m: nat).(R n0 m)))).(\lambda (m: nat).(nat_ind +(\lambda (n1: nat).(R (S n0) n1)) (H0 n0) (\lambda (n1: nat).(\lambda (_: (R +(S n0) n1)).(H1 n0 n1 (H2 n1)))) m)))) n))))). + +theorem eq_add_S: + \forall (n: nat).(\forall (m: nat).((eq nat (S n) (S m)) \to (eq nat n m))) +\def + \lambda (n: nat).(\lambda (m: nat).(\lambda (H: (eq nat (S n) (S +m))).(f_equal nat nat pred (S n) (S m) H))). + +theorem O_S: + \forall (n: nat).(not (eq nat O (S n))) +\def + \lambda (n: nat).(\lambda (H: (eq nat O (S n))).(eq_ind nat (S n) (\lambda +(n0: nat).(IsSucc n0)) I O (sym_eq nat O (S n) H))). + +theorem not_eq_S: + \forall (n: nat).(\forall (m: nat).((not (eq nat n m)) \to (not (eq nat (S +n) (S m))))) +\def + \lambda (n: nat).(\lambda (m: nat).(\lambda (H: (not (eq nat n m))).(\lambda +(H0: (eq nat (S n) (S m))).(H (eq_add_S n m H0))))). + +theorem pred_Sn: + \forall (m: nat).(eq nat m (pred (S m))) +\def + \lambda (m: nat).(refl_equal nat (pred (S m))). + +theorem S_pred: + \forall (n: nat).(\forall (m: nat).((lt m n) \to (eq nat n (S (pred n))))) +\def + \lambda (n: nat).(\lambda (m: nat).(\lambda (H: (lt m n)).(le_ind (S m) +(\lambda (n0: nat).(eq nat n0 (S (pred n0)))) (refl_equal nat (S (pred (S +m)))) (\lambda (m0: nat).(\lambda (_: (le (S m) m0)).(\lambda (_: (eq nat m0 +(S (pred m0)))).(refl_equal nat (S (pred (S m0))))))) n H))). + +theorem le_trans: + \forall (n: nat).(\forall (m: nat).(\forall (p: nat).((le n m) \to ((le m p) +\to (le n p))))) +\def + \lambda (n: nat).(\lambda (m: nat).(\lambda (p: nat).(\lambda (H: (le n +m)).(\lambda (H0: (le m p)).(le_ind m (\lambda (n0: nat).(le n n0)) H +(\lambda (m0: nat).(\lambda (_: (le m m0)).(\lambda (IHle: (le n m0)).(le_S n +m0 IHle)))) p H0))))). + +theorem le_trans_S: + \forall (n: nat).(\forall (m: nat).((le (S n) m) \to (le n m))) +\def + \lambda (n: nat).(\lambda (m: nat).(\lambda (H: (le (S n) m)).(le_trans n (S +n) m (le_S n n (le_n n)) H))). + +theorem le_n_S: + \forall (n: nat).(\forall (m: nat).((le n m) \to (le (S n) (S m)))) +\def + \lambda (n: nat).(\lambda (m: nat).(\lambda (H: (le n m)).(le_ind n (\lambda +(n0: nat).(le (S n) (S n0))) (le_n (S n)) (\lambda (m0: nat).(\lambda (_: (le +n m0)).(\lambda (IHle: (le (S n) (S m0))).(le_S (S n) (S m0) IHle)))) m H))). + +theorem le_O_n: + \forall (n: nat).(le O n) +\def + \lambda (n: nat).(nat_ind (\lambda (n0: nat).(le O n0)) (le_n O) (\lambda +(n0: nat).(\lambda (IHn: (le O n0)).(le_S O n0 IHn))) n). + +theorem le_S_n: + \forall (n: nat).(\forall (m: nat).((le (S n) (S m)) \to (le n m))) +\def + \lambda (n: nat).(\lambda (m: nat).(\lambda (H: (le (S n) (S m))).(le_ind (S +n) (\lambda (n0: nat).(le (pred (S n)) (pred n0))) (le_n n) (\lambda (m0: +nat).(\lambda (H0: (le (S n) m0)).(\lambda (_: (le n (pred m0))).(le_trans_S +n m0 H0)))) (S m) H))). + +theorem le_Sn_O: + \forall (n: nat).(not (le (S n) O)) +\def + \lambda (n: nat).(\lambda (H: (le (S n) O)).(le_ind (S n) (\lambda (n0: +nat).(IsSucc n0)) I (\lambda (m: nat).(\lambda (_: (le (S n) m)).(\lambda (_: +(IsSucc m)).I))) O H)). + +theorem le_Sn_n: + \forall (n: nat).(not (le (S n) n)) +\def + \lambda (n: nat).(nat_ind (\lambda (n0: nat).(not (le (S n0) n0))) (le_Sn_O +O) (\lambda (n0: nat).(\lambda (IHn: (not (le (S n0) n0))).(\lambda (H: (le +(S (S n0)) (S n0))).(IHn (le_S_n (S n0) n0 H))))) n). + +theorem le_antisym: + \forall (n: nat).(\forall (m: nat).((le n m) \to ((le m n) \to (eq nat n +m)))) +\def + \lambda (n: nat).(\lambda (m: nat).(\lambda (h: (le n m)).(le_ind n (\lambda +(n0: nat).((le n0 n) \to (eq nat n n0))) (\lambda (_: (le n n)).(refl_equal +nat n)) (\lambda (m0: nat).(\lambda (H: (le n m0)).(\lambda (_: (((le m0 n) +\to (eq nat n m0)))).(\lambda (H1: (le (S m0) n)).(False_ind (eq nat n (S +m0)) (let H2 \def (le_trans (S m0) n m0 H1 H) in ((let H3 \def (le_Sn_n m0) +in (\lambda (H4: (le (S m0) m0)).(H3 H4))) H2))))))) m h))). + +theorem le_n_O_eq: + \forall (n: nat).((le n O) \to (eq nat O n)) +\def + \lambda (n: nat).(\lambda (H: (le n O)).(le_antisym O n (le_O_n n) H)). + +theorem le_elim_rel: + \forall (P: ((nat \to (nat \to Prop)))).(((\forall (p: nat).(P O p))) \to +(((\forall (p: nat).(\forall (q: nat).((le p q) \to ((P p q) \to (P (S p) (S +q))))))) \to (\forall (n: nat).(\forall (m: nat).((le n m) \to (P n m)))))) +\def + \lambda (P: ((nat \to (nat \to Prop)))).(\lambda (H: ((\forall (p: nat).(P O +p)))).(\lambda (H0: ((\forall (p: nat).(\forall (q: nat).((le p q) \to ((P p +q) \to (P (S p) (S q)))))))).(\lambda (n: nat).(nat_ind (\lambda (n0: +nat).(\forall (m: nat).((le n0 m) \to (P n0 m)))) (\lambda (m: nat).(\lambda +(_: (le O m)).(H m))) (\lambda (n0: nat).(\lambda (IHn: ((\forall (m: +nat).((le n0 m) \to (P n0 m))))).(\lambda (m: nat).(\lambda (Le: (le (S n0) +m)).(le_ind (S n0) (\lambda (n1: nat).(P (S n0) n1)) (H0 n0 n0 (le_n n0) (IHn +n0 (le_n n0))) (\lambda (m0: nat).(\lambda (H1: (le (S n0) m0)).(\lambda (_: +(P (S n0) m0)).(H0 n0 m0 (le_trans_S n0 m0 H1) (IHn m0 (le_trans_S n0 m0 +H1)))))) m Le))))) n)))). + +theorem lt_n_n: + \forall (n: nat).(not (lt n n)) +\def + le_Sn_n. + +theorem lt_n_S: + \forall (n: nat).(\forall (m: nat).((lt n m) \to (lt (S n) (S m)))) +\def + \lambda (n: nat).(\lambda (m: nat).(\lambda (H: (lt n m)).(le_n_S (S n) m +H))). + +theorem lt_n_Sn: + \forall (n: nat).(lt n (S n)) +\def + \lambda (n: nat).(le_n (S n)). + +theorem lt_S_n: + \forall (n: nat).(\forall (m: nat).((lt (S n) (S m)) \to (lt n m))) +\def + \lambda (n: nat).(\lambda (m: nat).(\lambda (H: (lt (S n) (S m))).(le_S_n (S +n) m H))). + +theorem lt_n_O: + \forall (n: nat).(not (lt n O)) +\def + le_Sn_O. + +theorem lt_trans: + \forall (n: nat).(\forall (m: nat).(\forall (p: nat).((lt n m) \to ((lt m p) +\to (lt n p))))) +\def + \lambda (n: nat).(\lambda (m: nat).(\lambda (p: nat).(\lambda (H: (lt n +m)).(\lambda (H0: (lt m p)).(le_ind (S m) (\lambda (n0: nat).(lt n n0)) (le_S +(S n) m H) (\lambda (m0: nat).(\lambda (_: (le (S m) m0)).(\lambda (IHle: (lt +n m0)).(le_S (S n) m0 IHle)))) p H0))))). + +theorem lt_O_Sn: + \forall (n: nat).(lt O (S n)) +\def + \lambda (n: nat).(le_n_S O n (le_O_n n)). + +theorem lt_le_S: + \forall (n: nat).(\forall (p: nat).((lt n p) \to (le (S n) p))) +\def + \lambda (n: nat).(\lambda (p: nat).(\lambda (H: (lt n p)).H)). + +theorem le_not_lt: + \forall (n: nat).(\forall (m: nat).((le n m) \to (not (lt m n)))) +\def + \lambda (n: nat).(\lambda (m: nat).(\lambda (H: (le n m)).(le_ind n (\lambda +(n0: nat).(not (lt n0 n))) (lt_n_n n) (\lambda (m0: nat).(\lambda (_: (le n +m0)).(\lambda (IHle: (not (lt m0 n))).(\lambda (H1: (lt (S m0) n)).(IHle +(le_trans_S (S m0) n H1)))))) m H))). + +theorem le_lt_n_Sm: + \forall (n: nat).(\forall (m: nat).((le n m) \to (lt n (S m)))) +\def + \lambda (n: nat).(\lambda (m: nat).(\lambda (H: (le n m)).(le_n_S n m H))). + +theorem le_lt_trans: + \forall (n: nat).(\forall (m: nat).(\forall (p: nat).((le n m) \to ((lt m p) +\to (lt n p))))) +\def + \lambda (n: nat).(\lambda (m: nat).(\lambda (p: nat).(\lambda (H: (le n +m)).(\lambda (H0: (lt m p)).(le_ind (S m) (\lambda (n0: nat).(lt n n0)) +(le_n_S n m H) (\lambda (m0: nat).(\lambda (_: (le (S m) m0)).(\lambda (IHle: +(lt n m0)).(le_S (S n) m0 IHle)))) p H0))))). + +theorem lt_le_trans: + \forall (n: nat).(\forall (m: nat).(\forall (p: nat).((lt n m) \to ((le m p) +\to (lt n p))))) +\def + \lambda (n: nat).(\lambda (m: nat).(\lambda (p: nat).(\lambda (H: (lt n +m)).(\lambda (H0: (le m p)).(le_ind m (\lambda (n0: nat).(lt n n0)) H +(\lambda (m0: nat).(\lambda (_: (le m m0)).(\lambda (IHle: (lt n m0)).(le_S +(S n) m0 IHle)))) p H0))))). + +theorem lt_le_weak: + \forall (n: nat).(\forall (m: nat).((lt n m) \to (le n m))) +\def + \lambda (n: nat).(\lambda (m: nat).(\lambda (H: (lt n m)).(le_trans_S n m +H))). + +theorem lt_n_Sm_le: + \forall (n: nat).(\forall (m: nat).((lt n (S m)) \to (le n m))) +\def + \lambda (n: nat).(\lambda (m: nat).(\lambda (H: (lt n (S m))).(le_S_n n m +H))). + +theorem le_lt_or_eq: + \forall (n: nat).(\forall (m: nat).((le n m) \to (or (lt n m) (eq nat n m)))) +\def + \lambda (n: nat).(\lambda (m: nat).(\lambda (H: (le n m)).(le_ind n (\lambda +(n0: nat).(or (lt n n0) (eq nat n n0))) (or_intror (lt n n) (eq nat n n) +(refl_equal nat n)) (\lambda (m0: nat).(\lambda (H0: (le n m0)).(\lambda (_: +(or (lt n m0) (eq nat n m0))).(or_introl (lt n (S m0)) (eq nat n (S m0)) +(le_n_S n m0 H0))))) m H))). + +theorem le_or_lt: + \forall (n: nat).(\forall (m: nat).(or (le n m) (lt m n))) +\def + \lambda (n: nat).(\lambda (m: nat).(nat_double_ind (\lambda (n0: +nat).(\lambda (n1: nat).(or (le n0 n1) (lt n1 n0)))) (\lambda (n0: +nat).(or_introl (le O n0) (lt n0 O) (le_O_n n0))) (\lambda (n0: +nat).(or_intror (le (S n0) O) (lt O (S n0)) (lt_le_S O (S n0) (lt_O_Sn n0)))) +(\lambda (n0: nat).(\lambda (m0: nat).(\lambda (H: (or (le n0 m0) (lt m0 +n0))).(or_ind (le n0 m0) (lt m0 n0) (or (le (S n0) (S m0)) (lt (S m0) (S +n0))) (\lambda (H0: (le n0 m0)).(or_introl (le (S n0) (S m0)) (lt (S m0) (S +n0)) (le_n_S n0 m0 H0))) (\lambda (H0: (lt m0 n0)).(or_intror (le (S n0) (S +m0)) (lt (S m0) (S n0)) (le_n_S (S m0) n0 H0))) H)))) n m)). + +theorem plus_n_O: + \forall (n: nat).(eq nat n (plus n O)) +\def + \lambda (n: nat).(nat_ind (\lambda (n0: nat).(eq nat n0 (plus n0 O))) +(refl_equal nat O) (\lambda (n0: nat).(\lambda (H: (eq nat n0 (plus n0 +O))).(f_equal nat nat S n0 (plus n0 O) H))) n). + +theorem plus_n_Sm: + \forall (n: nat).(\forall (m: nat).(eq nat (S (plus n m)) (plus n (S m)))) +\def + \lambda (m: nat).(\lambda (n: nat).(nat_ind (\lambda (n0: nat).(eq nat (S +(plus n0 n)) (plus n0 (S n)))) (refl_equal nat (S n)) (\lambda (n0: +nat).(\lambda (H: (eq nat (S (plus n0 n)) (plus n0 (S n)))).(f_equal nat nat +S (S (plus n0 n)) (plus n0 (S n)) H))) m)). + +theorem plus_sym: + \forall (n: nat).(\forall (m: nat).(eq nat (plus n m) (plus m n))) +\def + \lambda (n: nat).(\lambda (m: nat).(nat_ind (\lambda (n0: nat).(eq nat (plus +n0 m) (plus m n0))) (plus_n_O m) (\lambda (y: nat).(\lambda (H: (eq nat (plus +y m) (plus m y))).(eq_ind nat (S (plus m y)) (\lambda (n0: nat).(eq nat (S +(plus y m)) n0)) (f_equal nat nat S (plus y m) (plus m y) H) (plus m (S y)) +(plus_n_Sm m y)))) n)). + +theorem plus_Snm_nSm: + \forall (n: nat).(\forall (m: nat).(eq nat (plus (S n) m) (plus n (S m)))) +\def + \lambda (n: nat).(\lambda (m: nat).(eq_ind_r nat (plus m n) (\lambda (n0: +nat).(eq nat (S n0) (plus n (S m)))) (eq_ind_r nat (plus (S m) n) (\lambda +(n0: nat).(eq nat (S (plus m n)) n0)) (refl_equal nat (plus (S m) n)) (plus n +(S m)) (plus_sym n (S m))) (plus n m) (plus_sym n m))). + +theorem plus_assoc_l: + \forall (n: nat).(\forall (m: nat).(\forall (p: nat).(eq nat (plus n (plus m +p)) (plus (plus n m) p)))) +\def + \lambda (n: nat).(\lambda (m: nat).(\lambda (p: nat).(nat_ind (\lambda (n0: +nat).(eq nat (plus n0 (plus m p)) (plus (plus n0 m) p))) (refl_equal nat +(plus m p)) (\lambda (n0: nat).(\lambda (H: (eq nat (plus n0 (plus m p)) +(plus (plus n0 m) p))).(f_equal nat nat S (plus n0 (plus m p)) (plus (plus n0 +m) p) H))) n))). + +theorem plus_assoc_r: + \forall (n: nat).(\forall (m: nat).(\forall (p: nat).(eq nat (plus (plus n +m) p) (plus n (plus m p))))) +\def + \lambda (n: nat).(\lambda (m: nat).(\lambda (p: nat).(sym_eq nat (plus n +(plus m p)) (plus (plus n m) p) (plus_assoc_l n m p)))). + +theorem simpl_plus_l: + \forall (n: nat).(\forall (m: nat).(\forall (p: nat).((eq nat (plus n m) +(plus n p)) \to (eq nat m p)))) +\def + \lambda (n: nat).(nat_ind (\lambda (n0: nat).(\forall (m: nat).(\forall (p: +nat).((eq nat (plus n0 m) (plus n0 p)) \to (eq nat m p))))) (\lambda (m: +nat).(\lambda (p: nat).(\lambda (H: (eq nat m p)).H))) (\lambda (n0: +nat).(\lambda (IHn: ((\forall (m: nat).(\forall (p: nat).((eq nat (plus n0 m) +(plus n0 p)) \to (eq nat m p)))))).(\lambda (m: nat).(\lambda (p: +nat).(\lambda (H: (eq nat (S (plus n0 m)) (S (plus n0 p)))).(IHn m p (IHn +(plus n0 m) (plus n0 p) (f_equal nat nat (plus n0) (plus n0 m) (plus n0 p) +(eq_add_S (plus n0 m) (plus n0 p) H))))))))) n). + +theorem minus_n_O: + \forall (n: nat).(eq nat n (minus n O)) +\def + \lambda (n: nat).(nat_ind (\lambda (n0: nat).(eq nat n0 (minus n0 O))) +(refl_equal nat O) (\lambda (n0: nat).(\lambda (_: (eq nat n0 (minus n0 +O))).(refl_equal nat (S n0)))) n). + +theorem minus_n_n: + \forall (n: nat).(eq nat O (minus n n)) +\def + \lambda (n: nat).(nat_ind (\lambda (n0: nat).(eq nat O (minus n0 n0))) +(refl_equal nat O) (\lambda (n0: nat).(\lambda (IHn: (eq nat O (minus n0 +n0))).IHn)) n). + +theorem minus_Sn_m: + \forall (n: nat).(\forall (m: nat).((le m n) \to (eq nat (S (minus n m)) +(minus (S n) m)))) +\def + \lambda (n: nat).(\lambda (m: nat).(\lambda (Le: (le m n)).(le_elim_rel +(\lambda (n0: nat).(\lambda (n1: nat).(eq nat (S (minus n1 n0)) (minus (S n1) +n0)))) (\lambda (p: nat).(f_equal nat nat S (minus p O) p (sym_eq nat p +(minus p O) (minus_n_O p)))) (\lambda (p: nat).(\lambda (q: nat).(\lambda (_: +(le p q)).(\lambda (H0: (eq nat (S (minus q p)) (match p with [O \Rightarrow +(S q) | (S l) \Rightarrow (minus q l)]))).H0)))) m n Le))). + +theorem plus_minus: + \forall (n: nat).(\forall (m: nat).(\forall (p: nat).((eq nat n (plus m p)) +\to (eq nat p (minus n m))))) +\def + \lambda (n: nat).(\lambda (m: nat).(\lambda (p: nat).(nat_double_ind +(\lambda (n0: nat).(\lambda (n1: nat).((eq nat n1 (plus n0 p)) \to (eq nat p +(minus n1 n0))))) (\lambda (n0: nat).(\lambda (H: (eq nat n0 p)).(eq_ind nat +n0 (\lambda (n1: nat).(eq nat p n1)) (sym_eq nat n0 p H) (minus n0 O) +(minus_n_O n0)))) (\lambda (n0: nat).(\lambda (H: (eq nat O (S (plus n0 +p)))).(False_ind (eq nat p O) (let H0 \def H in ((let H1 \def (O_S (plus n0 +p)) in (\lambda (H2: (eq nat O (S (plus n0 p)))).(H1 H2))) H0))))) (\lambda +(n0: nat).(\lambda (m0: nat).(\lambda (H: (((eq nat m0 (plus n0 p)) \to (eq +nat p (minus m0 n0))))).(\lambda (H0: (eq nat (S m0) (S (plus n0 p)))).(H +(eq_add_S m0 (plus n0 p) H0)))))) m n))). + +theorem minus_plus: + \forall (n: nat).(\forall (m: nat).(eq nat (minus (plus n m) n) m)) +\def + \lambda (n: nat).(\lambda (m: nat).(sym_eq nat m (minus (plus n m) n) +(plus_minus (plus n m) n m (refl_equal nat (plus n m))))). + +theorem le_pred_n: + \forall (n: nat).(le (pred n) n) +\def + \lambda (n: nat).(nat_ind (\lambda (n0: nat).(le (pred n0) n0)) (le_n O) +(\lambda (n0: nat).(\lambda (_: (le (pred n0) n0)).(le_S (pred (S n0)) n0 +(le_n n0)))) n). + +theorem le_plus_l: + \forall (n: nat).(\forall (m: nat).(le n (plus n m))) +\def + \lambda (n: nat).(nat_ind (\lambda (n0: nat).(\forall (m: nat).(le n0 (plus +n0 m)))) (\lambda (m: nat).(le_O_n m)) (\lambda (n0: nat).(\lambda (IHn: +((\forall (m: nat).(le n0 (plus n0 m))))).(\lambda (m: nat).(le_n_S n0 (plus +n0 m) (IHn m))))) n). + +theorem le_plus_r: + \forall (n: nat).(\forall (m: nat).(le m (plus n m))) +\def + \lambda (n: nat).(\lambda (m: nat).(nat_ind (\lambda (n0: nat).(le m (plus +n0 m))) (le_n m) (\lambda (n0: nat).(\lambda (H: (le m (plus n0 m))).(le_S m +(plus n0 m) H))) n)). + +theorem simpl_le_plus_l: + \forall (p: nat).(\forall (n: nat).(\forall (m: nat).((le (plus p n) (plus p +m)) \to (le n m)))) +\def + \lambda (p: nat).(nat_ind (\lambda (n: nat).(\forall (n0: nat).(\forall (m: +nat).((le (plus n n0) (plus n m)) \to (le n0 m))))) (\lambda (n: +nat).(\lambda (m: nat).(\lambda (H: (le n m)).H))) (\lambda (p0: +nat).(\lambda (IHp: ((\forall (n: nat).(\forall (m: nat).((le (plus p0 n) +(plus p0 m)) \to (le n m)))))).(\lambda (n: nat).(\lambda (m: nat).(\lambda +(H: (le (S (plus p0 n)) (S (plus p0 m)))).(IHp n m (le_S_n (plus p0 n) (plus +p0 m) H))))))) p). + +theorem le_plus_trans: + \forall (n: nat).(\forall (m: nat).(\forall (p: nat).((le n m) \to (le n +(plus m p))))) +\def + \lambda (n: nat).(\lambda (m: nat).(\lambda (p: nat).(\lambda (H: (le n +m)).(le_trans n m (plus m p) H (le_plus_l m p))))). + +theorem le_reg_l: + \forall (n: nat).(\forall (m: nat).(\forall (p: nat).((le n m) \to (le (plus +p n) (plus p m))))) +\def + \lambda (n: nat).(\lambda (m: nat).(\lambda (p: nat).(nat_ind (\lambda (n0: +nat).((le n m) \to (le (plus n0 n) (plus n0 m)))) (\lambda (H: (le n m)).H) +(\lambda (p0: nat).(\lambda (IHp: (((le n m) \to (le (plus p0 n) (plus p0 +m))))).(\lambda (H: (le n m)).(le_n_S (plus p0 n) (plus p0 m) (IHp H))))) +p))). + +theorem le_plus_plus: + \forall (n: nat).(\forall (m: nat).(\forall (p: nat).(\forall (q: nat).((le +n m) \to ((le p q) \to (le (plus n p) (plus m q))))))) +\def + \lambda (n: nat).(\lambda (m: nat).(\lambda (p: nat).(\lambda (q: +nat).(\lambda (H: (le n m)).(\lambda (H0: (le p q)).(le_ind n (\lambda (n0: +nat).(le (plus n p) (plus n0 q))) (le_reg_l p q n H0) (\lambda (m0: +nat).(\lambda (_: (le n m0)).(\lambda (H2: (le (plus n p) (plus m0 q))).(le_S +(plus n p) (plus m0 q) H2)))) m H)))))). + +theorem le_plus_minus: + \forall (n: nat).(\forall (m: nat).((le n m) \to (eq nat m (plus n (minus m +n))))) +\def + \lambda (n: nat).(\lambda (m: nat).(\lambda (Le: (le n m)).(le_elim_rel +(\lambda (n0: nat).(\lambda (n1: nat).(eq nat n1 (plus n0 (minus n1 n0))))) +(\lambda (p: nat).(minus_n_O p)) (\lambda (p: nat).(\lambda (q: nat).(\lambda +(_: (le p q)).(\lambda (H0: (eq nat q (plus p (minus q p)))).(f_equal nat nat +S q (plus p (minus q p)) H0))))) n m Le))). + +theorem le_plus_minus_r: + \forall (n: nat).(\forall (m: nat).((le n m) \to (eq nat (plus n (minus m +n)) m))) +\def + \lambda (n: nat).(\lambda (m: nat).(\lambda (H: (le n m)).(sym_eq nat m +(plus n (minus m n)) (le_plus_minus n m H)))). + +theorem simpl_lt_plus_l: + \forall (n: nat).(\forall (m: nat).(\forall (p: nat).((lt (plus p n) (plus p +m)) \to (lt n m)))) +\def + \lambda (n: nat).(\lambda (m: nat).(\lambda (p: nat).(nat_ind (\lambda (n0: +nat).((lt (plus n0 n) (plus n0 m)) \to (lt n m))) (\lambda (H: (lt n m)).H) +(\lambda (p0: nat).(\lambda (IHp: (((lt (plus p0 n) (plus p0 m)) \to (lt n +m)))).(\lambda (H: (lt (S (plus p0 n)) (S (plus p0 m)))).(IHp (le_S_n (S +(plus p0 n)) (plus p0 m) H))))) p))). + +theorem lt_reg_l: + \forall (n: nat).(\forall (m: nat).(\forall (p: nat).((lt n m) \to (lt (plus +p n) (plus p m))))) +\def + \lambda (n: nat).(\lambda (m: nat).(\lambda (p: nat).(nat_ind (\lambda (n0: +nat).((lt n m) \to (lt (plus n0 n) (plus n0 m)))) (\lambda (H: (lt n m)).H) +(\lambda (p0: nat).(\lambda (IHp: (((lt n m) \to (lt (plus p0 n) (plus p0 +m))))).(\lambda (H: (lt n m)).(lt_n_S (plus p0 n) (plus p0 m) (IHp H))))) +p))). + +theorem lt_reg_r: + \forall (n: nat).(\forall (m: nat).(\forall (p: nat).((lt n m) \to (lt (plus +n p) (plus m p))))) +\def + \lambda (n: nat).(\lambda (m: nat).(\lambda (p: nat).(\lambda (H: (lt n +m)).(eq_ind_r nat (plus p n) (\lambda (n0: nat).(lt n0 (plus m p))) (eq_ind_r +nat (plus p m) (\lambda (n0: nat).(lt (plus p n) n0)) (nat_ind (\lambda (n0: +nat).(lt (plus n0 n) (plus n0 m))) H (\lambda (n0: nat).(\lambda (_: (lt +(plus n0 n) (plus n0 m))).(lt_reg_l n m (S n0) H))) p) (plus m p) (plus_sym m +p)) (plus n p) (plus_sym n p))))). + +theorem le_lt_plus_plus: + \forall (n: nat).(\forall (m: nat).(\forall (p: nat).(\forall (q: nat).((le +n m) \to ((lt p q) \to (lt (plus n p) (plus m q))))))) +\def + \lambda (n: nat).(\lambda (m: nat).(\lambda (p: nat).(\lambda (q: +nat).(\lambda (H: (le n m)).(\lambda (H0: (le (S p) q)).(eq_ind_r nat (plus n +(S p)) (\lambda (n0: nat).(le n0 (plus m q))) (le_plus_plus n m (S p) q H H0) +(plus (S n) p) (plus_Snm_nSm n p))))))). + +theorem lt_le_plus_plus: + \forall (n: nat).(\forall (m: nat).(\forall (p: nat).(\forall (q: nat).((lt +n m) \to ((le p q) \to (lt (plus n p) (plus m q))))))) +\def + \lambda (n: nat).(\lambda (m: nat).(\lambda (p: nat).(\lambda (q: +nat).(\lambda (H: (le (S n) m)).(\lambda (H0: (le p q)).(le_plus_plus (S n) m +p q H H0)))))). + +theorem lt_plus_plus: + \forall (n: nat).(\forall (m: nat).(\forall (p: nat).(\forall (q: nat).((lt +n m) \to ((lt p q) \to (lt (plus n p) (plus m q))))))) +\def + \lambda (n: nat).(\lambda (m: nat).(\lambda (p: nat).(\lambda (q: +nat).(\lambda (H: (lt n m)).(\lambda (H0: (lt p q)).(lt_le_plus_plus n m p q +H (lt_le_weak p q H0))))))). + +theorem well_founded_ltof: + \forall (A: Set).(\forall (f: ((A \to nat))).(well_founded A (ltof A f))) +\def + \lambda (A: Set).(\lambda (f: ((A \to nat))).(let H \def (\lambda (n: +nat).(nat_ind (\lambda (n0: nat).(\forall (a: A).((lt (f a) n0) \to (Acc A +(ltof A f) a)))) (\lambda (a: A).(\lambda (H: (lt (f a) O)).(False_ind (Acc A +(ltof A f) a) (let H0 \def H in ((let H1 \def (lt_n_O (f a)) in (\lambda (H2: +(lt (f a) O)).(H1 H2))) H0))))) (\lambda (n0: nat).(\lambda (IHn: ((\forall +(a: A).((lt (f a) n0) \to (Acc A (ltof A f) a))))).(\lambda (a: A).(\lambda +(ltSma: (lt (f a) (S n0))).(Acc_intro A (ltof A f) a (\lambda (b: A).(\lambda +(ltfafb: (lt (f b) (f a))).(IHn b (lt_le_trans (f b) (f a) n0 ltfafb +(lt_n_Sm_le (f a) n0 ltSma)))))))))) n)) in (\lambda (a: A).(H (S (f a)) a +(le_n (S (f a))))))). + +theorem lt_wf: + well_founded nat lt +\def + well_founded_ltof nat (\lambda (m: nat).m). + +theorem lt_wf_ind: + \forall (p: nat).(\forall (P: ((nat \to Prop))).(((\forall (n: +nat).(((\forall (m: nat).((lt m n) \to (P m)))) \to (P n)))) \to (P p))) +\def + \lambda (p: nat).(\lambda (P: ((nat \to Prop))).(\lambda (H: ((\forall (n: +nat).(((\forall (m: nat).((lt m n) \to (P m)))) \to (P n))))).(Acc_ind nat lt +(\lambda (n: nat).(P n)) (\lambda (x: nat).(\lambda (_: ((\forall (y: +nat).((lt y x) \to (Acc nat lt y))))).(\lambda (H1: ((\forall (y: nat).((lt y +x) \to (P y))))).(H x H1)))) p (lt_wf p)))). +