X-Git-Url: http://matita.cs.unibo.it/gitweb/?p=helm.git;a=blobdiff_plain;f=matita%2Fcontribs%2Fdama%2Fdama%2Fattic%2Fvector_spaces.ma;fp=matita%2Fcontribs%2Fdama%2Fdama%2Fattic%2Fvector_spaces.ma;h=5002b022c7b4be2a7288f2a0250d67fafbc1d4ea;hp=0000000000000000000000000000000000000000;hb=f61af501fb4608cc4fb062a0864c774e677f0d76;hpb=58ae1809c352e71e7b5530dc41e2bfc834e1aef1 diff --git a/matita/contribs/dama/dama/attic/vector_spaces.ma b/matita/contribs/dama/dama/attic/vector_spaces.ma new file mode 100644 index 000000000..5002b022c --- /dev/null +++ b/matita/contribs/dama/dama/attic/vector_spaces.ma @@ -0,0 +1,151 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| The HELM team. *) +(* ||A|| http://helm.cs.unibo.it *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU General Public License Version 2 *) +(* *) +(**************************************************************************) + + + +include "attic/reals.ma". + +record is_vector_space (K: field) (G:abelian_group) (emult:K→G→G) : Prop +≝ + { vs_nilpotent: ∀v. emult 0 v = 0; + vs_neutral: ∀v. emult 1 v = v; + vs_distributive: ∀a,b,v. emult (a + b) v = (emult a v) + (emult b v); + vs_associative: ∀a,b,v. emult (a * b) v = emult a (emult b v) + }. + +record vector_space (K:field): Type \def +{ vs_abelian_group :> abelian_group; + emult: K → vs_abelian_group → vs_abelian_group; + vs_vector_space_properties :> is_vector_space ? vs_abelian_group emult +}. + +interpretation "Vector space external product" 'times a b = + (cic:/matita/attic/vector_spaces/emult.con _ _ a b). + +record is_semi_norm (R:real) (V: vector_space R) (semi_norm:V→R) : Prop \def + { sn_positive: ∀x:V. zero R ≤ semi_norm x; + sn_omogeneous: ∀a:R.∀x:V. semi_norm (a*x) = (abs ? a) * semi_norm x; + sn_triangle_inequality: ∀x,y:V. semi_norm (x + y) ≤ semi_norm x + semi_norm y + }. + +theorem eq_semi_norm_zero_zero: + ∀R:real.∀V:vector_space R.∀semi_norm:V→R. + is_semi_norm ? ? semi_norm → + semi_norm 0 = 0. + intros; + (* facile *) + elim daemon. +qed. + +record is_norm (R:real) (V:vector_space R) (norm:V → R) : Prop ≝ + { n_semi_norm:> is_semi_norm ? ? norm; + n_properness: ∀x:V. norm x = 0 → x = 0 + }. + +record norm (R:real) (V:vector_space R) : Type ≝ + { n_function:1> V→R; + n_norm_properties: is_norm ? ? n_function + }. + +record is_semi_distance (R:real) (C:Type) (semi_d: C→C→R) : Prop ≝ + { sd_positive: ∀x,y:C. zero R ≤ semi_d x y; + sd_properness: ∀x:C. semi_d x x = 0; + sd_triangle_inequality: ∀x,y,z:C. semi_d x z ≤ semi_d x y + semi_d z y + }. + +record is_distance (R:real) (C:Type) (d:C→C→R) : Prop ≝ + { d_semi_distance:> is_semi_distance ? ? d; + d_properness: ∀x,y:C. d x y = 0 → x=y + }. + +record distance (R:real) (V:vector_space R) : Type ≝ + { d_function:2> V→V→R; + d_distance_properties: is_distance ? ? d_function + }. + +definition induced_distance_fun ≝ + λR:real.λV:vector_space R.λnorm:norm ? V. + λf,g:V.norm (f - g). + +theorem induced_distance_is_distance: + ∀R:real.∀V:vector_space R.∀norm:norm ? V. + is_distance ? ? (induced_distance_fun ? ? norm). +elim daemon.(* + intros; + apply mk_is_distance; + [ apply mk_is_semi_distance; + [ unfold induced_distance_fun; + intros; + apply sn_positive; + apply n_semi_norm; + apply (n_norm_properties ? ? norm) + | unfold induced_distance_fun; + intros; + unfold minus; + rewrite < plus_comm; + rewrite > opp_inverse; + apply eq_semi_norm_zero_zero; + apply n_semi_norm; + apply (n_norm_properties ? ? norm) + | unfold induced_distance_fun; + intros; + (* ??? *) + elim daemon + ] + | unfold induced_distance_fun; + intros; + generalize in match (n_properness ? ? norm ? ? H); + [ intro; + (* facile *) + elim daemon + | apply (n_norm_properties ? ? norm) + ] + ].*) +qed. + +definition induced_distance ≝ + λR:real.λV:vector_space R.λnorm:norm ? V. + mk_distance ? ? (induced_distance_fun ? ? norm) + (induced_distance_is_distance ? ? norm). + +definition tends_to : + ∀R:real.∀V:vector_space R.∀d:distance ? V.∀f:nat→V.∀l:V.Prop. +apply + (λR:real.λV:vector_space R.λd:distance ? V.λf:nat→V.λl:V. + ∀n:nat.∃m:nat.∀j:nat. m ≤ j → + d (f j) l ≤ inv R (sum_field ? (S n)) ?); + apply not_eq_sum_field_zero; + unfold; + autobatch. +qed. + +definition is_cauchy_seq : ∀R:real.\forall V:vector_space R. +\forall d:distance ? V.∀f:nat→V.Prop. + apply + (λR:real.λV: vector_space R. \lambda d:distance ? V. + \lambda f:nat→V. + ∀m:nat. + ∃n:nat.∀N. n ≤ N → + -(inv R (sum_field ? (S m)) ?) ≤ d (f N) (f n) ∧ + d (f N) (f n)≤ inv R (sum_field R (S m)) ?); + apply not_eq_sum_field_zero; + unfold; + autobatch. +qed. + +definition is_complete ≝ + λR:real.λV:vector_space R. + λd:distance ? V. + ∀f:nat→V. is_cauchy_seq ? ? d f→ + ex V (λl:V. tends_to ? ? d f l).