X-Git-Url: http://matita.cs.unibo.it/gitweb/?p=helm.git;a=blobdiff_plain;f=matita%2Fcontribs%2Fdama%2Fdama%2Fmetric_lattice.ma;fp=matita%2Fcontribs%2Fdama%2Fdama%2Fmetric_lattice.ma;h=f0242da284896e612f5774aa801bc881a9606ff8;hp=0000000000000000000000000000000000000000;hb=f61af501fb4608cc4fb062a0864c774e677f0d76;hpb=58ae1809c352e71e7b5530dc41e2bfc834e1aef1 diff --git a/matita/contribs/dama/dama/metric_lattice.ma b/matita/contribs/dama/dama/metric_lattice.ma new file mode 100644 index 000000000..f0242da28 --- /dev/null +++ b/matita/contribs/dama/dama/metric_lattice.ma @@ -0,0 +1,117 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| The HELM team. *) +(* ||A|| http://helm.cs.unibo.it *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU General Public License Version 2 *) +(* *) +(**************************************************************************) + +include "metric_space.ma". +include "lattice.ma". + +record mlattice_ (R : todgroup) : Type ≝ { + ml_mspace_: metric_space R; + ml_lattice:> lattice; + ml_with: ms_carr ? ml_mspace_ = Type_OF_lattice ml_lattice +}. + +lemma ml_mspace: ∀R.mlattice_ R → metric_space R. +intros (R ml); apply (mk_metric_space R (Type_OF_mlattice_ ? ml)); +unfold Type_OF_mlattice_; cases (ml_with ? ml); simplify; +[apply (metric ? (ml_mspace_ ? ml));|apply (mpositive ? (ml_mspace_ ? ml)); +|apply (mreflexive ? (ml_mspace_ ? ml));|apply (msymmetric ? (ml_mspace_ ? ml)); +|apply (mtineq ? (ml_mspace_ ? ml))] +qed. + +coercion cic:/matita/metric_lattice/ml_mspace.con. + +alias symbol "plus" = "Abelian group plus". +alias symbol "leq" = "Excess less or equal than". +record mlattice (R : todgroup) : Type ≝ { + ml_carr :> mlattice_ R; + ml_prop1: ∀a,b:ml_carr. 0 < δ a b → a # b; + ml_prop2: ∀a,b,c:ml_carr. δ (a∨b) (a∨c) + δ (a∧b) (a∧c) ≤ (δ b c) +}. + +interpretation "Metric lattice leq" 'leq a b = + (cic:/matita/excess/le.con (cic:/matita/metric_lattice/excess_OF_mlattice1.con _ _) a b). +interpretation "Metric lattice geq" 'geq a b = + (cic:/matita/excess/le.con (cic:/matita/metric_lattice/excess_OF_mlattice.con _ _) a b). + +lemma eq_to_ndlt0: ∀R.∀ml:mlattice R.∀a,b:ml. a ≈ b → ¬ 0 < δ a b. +intros (R ml a b E); intro H; apply E; apply ml_prop1; +assumption; +qed. + +lemma eq_to_dzero: ∀R.∀ml:mlattice R.∀x,y:ml.x ≈ y → δ x y ≈ 0. +intros (R ml x y H); intro H1; apply H; clear H; +apply ml_prop1; split [apply mpositive] apply ap_symmetric; +assumption; +qed. + +lemma meq_l: ∀R.∀ml:mlattice R.∀x,y,z:ml. x≈z → δx y ≈ δz y. +intros (R ml x y z); apply le_le_eq; +[ apply (le_transitive ???? (mtineq ???y z)); + apply (le_rewl ??? (0+δz y) (eq_to_dzero ???? H)); + apply (le_rewl ??? (δz y) (zero_neutral ??)); apply le_reflexive; +| apply (le_transitive ???? (mtineq ???y x)); + apply (le_rewl ??? (0+δx y) (eq_to_dzero ??z x H)); + apply (le_rewl ??? (δx y) (zero_neutral ??)); apply le_reflexive;] +qed. + +(* 3.3 *) +lemma meq_r: ∀R.∀ml:mlattice R.∀x,y,z:ml. x≈z → δy x ≈ δy z. +intros; apply (eq_trans ???? (msymmetric ??y x)); +apply (eq_trans ????? (msymmetric ??z y)); apply meq_l; assumption; +qed. + +lemma dap_to_lt: ∀R.∀ml:mlattice R.∀x,y:ml. δ x y # 0 → 0 < δ x y. +intros; split [apply mpositive] apply ap_symmetric; assumption; +qed. + +lemma dap_to_ap: ∀R.∀ml:mlattice R.∀x,y:ml. δ x y # 0 → x # y. +intros (R ml x y H); apply ml_prop1; split; [apply mpositive;] +apply ap_symmetric; assumption; +qed. + +(* 3.11 *) +lemma le_mtri: + ∀R.∀ml:mlattice R.∀x,y,z:ml. x ≤ y → y ≤ z → δ x z ≈ δ x y + δ y z. +intros (R ml x y z Lxy Lyz); apply le_le_eq; [apply mtineq] +apply (le_transitive ????? (ml_prop2 ?? (y) ??)); +cut ( δx y+ δy z ≈ δ(y∨x) (y∨z)+ δ(y∧x) (y∧z)); [ + apply (le_rewr ??? (δx y+ δy z)); [assumption] apply le_reflexive] +lapply (le_to_eqm y x Lxy) as Dxm; lapply (le_to_eqm z y Lyz) as Dym; +lapply (le_to_eqj x y Lxy) as Dxj; lapply (le_to_eqj y z Lyz) as Dyj; clear Lxy Lyz; +STOP +apply (Eq≈ (δ(x∧y) y + δy z) (meq_l ????? Dxm)); +apply (Eq≈ (δ(x∧y) (y∧z) + δy z) (meq_r ????? Dym)); +apply (Eq≈ (δ(x∧y) (y∧z) + δ(y∨x) z));[ + apply feq_plusl; apply meq_l; clear Dyj Dxm Dym; assumption] +apply (Eq≈ (δ(x∧y) (y∧z) + δ(y∨x) (z∨y))); [ + apply (feq_plusl ? (δ(x∧y) (y∧z)) ?? (meq_r ??? (y∨x) ? Dyj));] +apply (Eq≈ ? (plus_comm ???)); +apply (Eq≈ (δ(y∨x) (y∨z)+ δ(x∧y) (y∧z)));[ + apply feq_plusr; apply meq_r; apply (join_comm ??);] +apply feq_plusl; +apply (Eq≈ (δ(y∧x) (y∧z)) (meq_l ????? (meet_comm ??))); +apply eq_reflexive; +qed. + + +(* 3.17 conclusione: δ x y ≈ 0 *) +(* 3.20 conclusione: δ x y ≈ 0 *) +(* 3.21 sup forte + strong_sup x ≝ ∀n. s n ≤ x ∧ ∀y x ≰ y → ∃n. s n ≰ y + strong_sup_zoli x ≝ ∀n. s n ≤ x ∧ ∄y. y#x ∧ y ≤ x +*) +(* 3.22 sup debole (più piccolo dei maggioranti) *) +(* 3.23 conclusion: δ x sup(...) ≈ 0 *) +(* 3.25 vero nel reticolo e basta (niente δ) *) +(* 3.36 conclusion: δ x y ≈ 0 *)