X-Git-Url: http://matita.cs.unibo.it/gitweb/?p=helm.git;a=blobdiff_plain;f=matita%2Flibrary%2FQ%2Fq.ma;fp=matita%2Flibrary%2FQ%2Fq.ma;h=072532d7bc7a4c8732486f5886a9147f082d5523;hp=0000000000000000000000000000000000000000;hb=f61af501fb4608cc4fb062a0864c774e677f0d76;hpb=58ae1809c352e71e7b5530dc41e2bfc834e1aef1 diff --git a/matita/library/Q/q.ma b/matita/library/Q/q.ma new file mode 100644 index 000000000..072532d7b --- /dev/null +++ b/matita/library/Q/q.ma @@ -0,0 +1,341 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| A.Asperti, C.Sacerdoti Coen, *) +(* ||A|| E.Tassi, S.Zacchiroli *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU Lesser General Public License Version 2.1 *) +(* *) +(**************************************************************************) + +set "baseuri" "cic:/matita/Q/q". + +include "Z/compare.ma". +include "Z/plus.ma". + +(* a fraction is a list of Z-coefficients for primes, in natural +order. The last coefficient must eventually be different from 0 *) + +inductive fraction : Set \def + pp : nat \to fraction +| nn: nat \to fraction +| cons : Z \to fraction \to fraction. + +inductive ratio : Set \def + one : ratio + | frac : fraction \to ratio. + +(* a rational number is either O or a ratio with a sign *) +inductive Q : Set \def + OQ : Q + | Qpos : ratio \to Q + | Qneg : ratio \to Q. + +(* double elimination principles *) +theorem fraction_elim2: +\forall R:fraction \to fraction \to Prop. +(\forall n:nat.\forall g:fraction.R (pp n) g) \to +(\forall n:nat.\forall g:fraction.R (nn n) g) \to +(\forall x:Z.\forall f:fraction.\forall m:nat.R (cons x f) (pp m)) \to +(\forall x:Z.\forall f:fraction.\forall m:nat.R (cons x f) (nn m)) \to +(\forall x,y:Z.\forall f,g:fraction.R f g \to R (cons x f) (cons y g)) \to +\forall f,g:fraction. R f g. +intros 7.elim f. + apply H. + apply H1. + elim g. + apply H2. + apply H3. + apply H4.apply H5. +qed. + +(* boolean equality *) +let rec eqfb f g \def +match f with +[ (pp n) \Rightarrow + match g with + [ (pp m) \Rightarrow eqb n m + | (nn m) \Rightarrow false + | (cons y g1) \Rightarrow false] +| (nn n) \Rightarrow + match g with + [ (pp m) \Rightarrow false + | (nn m) \Rightarrow eqb n m + | (cons y g1) \Rightarrow false] +| (cons x f1) \Rightarrow + match g with + [ (pp m) \Rightarrow false + | (nn m) \Rightarrow false + | (cons y g1) \Rightarrow andb (eqZb x y) (eqfb f1 g1)]]. + +(* discrimination *) +definition aux \def + \lambda f. match f with + [ (pp n) \Rightarrow n + | (nn n) \Rightarrow n + | (cons x f) \Rightarrow O]. + +definition fhd \def +\lambda f. match f with + [ (pp n) \Rightarrow (pos n) + | (nn n) \Rightarrow (neg n) + | (cons x f) \Rightarrow x]. + +definition ftl \def +\lambda f. match f with + [ (pp n) \Rightarrow (pp n) + | (nn n) \Rightarrow (nn n) + | (cons x f) \Rightarrow f]. + +theorem injective_pp : injective nat fraction pp. +unfold injective.intros. +change with ((aux (pp x)) = (aux (pp y))). +apply eq_f.assumption. +qed. + +theorem injective_nn : injective nat fraction nn. +unfold injective.intros. +change with ((aux (nn x)) = (aux (nn y))). +apply eq_f.assumption. +qed. + +theorem eq_cons_to_eq1: \forall f,g:fraction.\forall x,y:Z. +(cons x f) = (cons y g) \to x = y. +intros. +change with ((fhd (cons x f)) = (fhd (cons y g))). +apply eq_f.assumption. +qed. + +theorem eq_cons_to_eq2: \forall x,y:Z.\forall f,g:fraction. +(cons x f) = (cons y g) \to f = g. +intros. +change with ((ftl (cons x f)) = (ftl (cons y g))). +apply eq_f.assumption. +qed. + +theorem not_eq_pp_nn: \forall n,m:nat. pp n \neq nn m. +intros.unfold Not. intro. +change with match (pp n) with +[ (pp n) \Rightarrow False +| (nn n) \Rightarrow True +| (cons x f) \Rightarrow True]. +rewrite > H. +simplify.exact I. +qed. + +theorem not_eq_pp_cons: +\forall n:nat.\forall x:Z. \forall f:fraction. +pp n \neq cons x f. +intros.unfold Not. intro. +change with match (pp n) with +[ (pp n) \Rightarrow False +| (nn n) \Rightarrow True +| (cons x f) \Rightarrow True]. +rewrite > H. +simplify.exact I. +qed. + +theorem not_eq_nn_cons: +\forall n:nat.\forall x:Z. \forall f:fraction. +nn n \neq cons x f. +intros.unfold Not. intro. +change with match (nn n) with +[ (pp n) \Rightarrow True +| (nn n) \Rightarrow False +| (cons x f) \Rightarrow True]. +rewrite > H. +simplify.exact I. +qed. + +theorem decidable_eq_fraction: \forall f,g:fraction. +decidable (f = g). +intros.unfold decidable. +apply (fraction_elim2 (\lambda f,g. f=g \lor (f=g \to False))). + intros.elim g1. + elim ((decidable_eq_nat n n1) : n=n1 \lor (n=n1 \to False)). + left.apply eq_f. assumption. + right.intro.apply H.apply injective_pp.assumption. + right.apply not_eq_pp_nn. + right.apply not_eq_pp_cons. + intros. elim g1. + right.intro.apply (not_eq_pp_nn n1 n).apply sym_eq. assumption. + elim ((decidable_eq_nat n n1) : n=n1 \lor (n=n1 \to False)). + left. apply eq_f. assumption. + right.intro.apply H.apply injective_nn.assumption. + right.apply not_eq_nn_cons. + intros.right.intro.apply (not_eq_pp_cons m x f1).apply sym_eq.assumption. + intros.right.intro.apply (not_eq_nn_cons m x f1).apply sym_eq.assumption. + intros.elim H. + elim ((decidable_eq_Z x y) : x=y \lor (x=y \to False)). + left.apply eq_f2.assumption. + assumption. + right.intro.apply H2.apply (eq_cons_to_eq1 f1 g1).assumption. + right.intro.apply H1.apply (eq_cons_to_eq2 x y f1 g1).assumption. +qed. + +theorem eqfb_to_Prop: \forall f,g:fraction. +match (eqfb f g) with +[true \Rightarrow f=g +|false \Rightarrow f \neq g]. +intros.apply (fraction_elim2 +(\lambda f,g.match (eqfb f g) with +[true \Rightarrow f=g +|false \Rightarrow f \neq g])). + intros.elim g1. + simplify.apply eqb_elim. + intro.simplify.apply eq_f.assumption. + intro.simplify.unfold Not.intro.apply H.apply injective_pp.assumption. + simplify.apply not_eq_pp_nn. + simplify.apply not_eq_pp_cons. + intros.elim g1. + simplify.unfold Not.intro.apply (not_eq_pp_nn n1 n).apply sym_eq. assumption. + simplify.apply eqb_elim.intro.simplify.apply eq_f.assumption. + intro.simplify.unfold Not.intro.apply H.apply injective_nn.assumption. + simplify.apply not_eq_nn_cons. + intros.simplify.unfold Not.intro.apply (not_eq_pp_cons m x f1).apply sym_eq. assumption. + intros.simplify.unfold Not.intro.apply (not_eq_nn_cons m x f1).apply sym_eq. assumption. + intros. + simplify. + apply eqZb_elim. + intro.generalize in match H.elim (eqfb f1 g1). + simplify.apply eq_f2.assumption. + apply H2. + simplify.unfold Not.intro.apply H2.apply (eq_cons_to_eq2 x y).assumption. + intro.simplify.unfold Not.intro.apply H1.apply (eq_cons_to_eq1 f1 g1).assumption. +qed. + +let rec finv f \def + match f with + [ (pp n) \Rightarrow (nn n) + | (nn n) \Rightarrow (pp n) + | (cons x g) \Rightarrow (cons (Zopp x) (finv g))]. + +definition Z_to_ratio :Z \to ratio \def +\lambda x:Z. match x with +[ OZ \Rightarrow one +| (pos n) \Rightarrow frac (pp n) +| (neg n) \Rightarrow frac (nn n)]. + +let rec ftimes f g \def + match f with + [ (pp n) \Rightarrow + match g with + [(pp m) \Rightarrow Z_to_ratio (pos n + pos m) + | (nn m) \Rightarrow Z_to_ratio (pos n + neg m) + | (cons y g1) \Rightarrow frac (cons (pos n + y) g1)] + | (nn n) \Rightarrow + match g with + [(pp m) \Rightarrow Z_to_ratio (neg n + pos m) + | (nn m) \Rightarrow Z_to_ratio (neg n + neg m) + | (cons y g1) \Rightarrow frac (cons (neg n + y) g1)] + | (cons x f1) \Rightarrow + match g with + [ (pp m) \Rightarrow frac (cons (x + pos m) f1) + | (nn m) \Rightarrow frac (cons (x + neg m) f1) + | (cons y g1) \Rightarrow + match ftimes f1 g1 with + [ one \Rightarrow Z_to_ratio (x + y) + | (frac h) \Rightarrow frac (cons (x + y) h)]]]. + +theorem symmetric2_ftimes: symmetric2 fraction ratio ftimes. +unfold symmetric2. intros.apply (fraction_elim2 (\lambda f,g.ftimes f g = ftimes g f)). + intros.elim g. + change with (Z_to_ratio (pos n + pos n1) = Z_to_ratio (pos n1 + pos n)). + apply eq_f.apply sym_Zplus. + change with (Z_to_ratio (pos n + neg n1) = Z_to_ratio (neg n1 + pos n)). + apply eq_f.apply sym_Zplus. + change with (frac (cons (pos n + z) f) = frac (cons (z + pos n) f)). + rewrite < sym_Zplus.reflexivity. + intros.elim g. + change with (Z_to_ratio (neg n + pos n1) = Z_to_ratio (pos n1 + neg n)). + apply eq_f.apply sym_Zplus. + change with (Z_to_ratio (neg n + neg n1) = Z_to_ratio (neg n1 + neg n)). + apply eq_f.apply sym_Zplus. + change with (frac (cons (neg n + z) f) = frac (cons (z + neg n) f)). + rewrite < sym_Zplus.reflexivity. + intros.change with (frac (cons (x1 + pos m) f) = frac (cons (pos m + x1) f)). + rewrite < sym_Zplus.reflexivity. + intros.change with (frac (cons (x1 + neg m) f) = frac (cons (neg m + x1) f)). + rewrite < sym_Zplus.reflexivity. + intros. + (*CSC: simplify does something nasty here because of a redex in Zplus *) + change with + (match ftimes f g with + [ one \Rightarrow Z_to_ratio (x1 + y1) + | (frac h) \Rightarrow frac (cons (x1 + y1) h)] = + match ftimes g f with + [ one \Rightarrow Z_to_ratio (y1 + x1) + | (frac h) \Rightarrow frac (cons (y1 + x1) h)]). + rewrite < H.rewrite < sym_Zplus.reflexivity. +qed. + +theorem ftimes_finv : \forall f:fraction. ftimes f (finv f) = one. +intro.elim f. + change with (Z_to_ratio (pos n + - (pos n)) = one). + rewrite > Zplus_Zopp.reflexivity. + change with (Z_to_ratio (neg n + - (neg n)) = one). + rewrite > Zplus_Zopp.reflexivity. + (*CSC: simplify does something nasty here because of a redex in Zplus *) +(* again: we would need something to help finding the right change *) + change with + (match ftimes f1 (finv f1) with + [ one \Rightarrow Z_to_ratio (z + - z) + | (frac h) \Rightarrow frac (cons (z + - z) h)] = one). + rewrite > H.rewrite > Zplus_Zopp.reflexivity. +qed. + +definition rtimes : ratio \to ratio \to ratio \def +\lambda r,s:ratio. + match r with + [one \Rightarrow s + | (frac f) \Rightarrow + match s with + [one \Rightarrow frac f + | (frac g) \Rightarrow ftimes f g]]. + +theorem symmetric_rtimes : symmetric ratio rtimes. +change with (\forall r,s:ratio. rtimes r s = rtimes s r). +intros. +elim r. elim s. +reflexivity. +reflexivity. +elim s. +reflexivity. +simplify.apply symmetric2_ftimes. +qed. + +definition rinv : ratio \to ratio \def +\lambda r:ratio. + match r with + [one \Rightarrow one + | (frac f) \Rightarrow frac (finv f)]. + +theorem rtimes_rinv: \forall r:ratio. rtimes r (rinv r) = one. +intro.elim r. +reflexivity. +simplify.apply ftimes_finv. +qed. + +definition Qtimes : Q \to Q \to Q \def +\lambda p,q. + match p with + [OQ \Rightarrow OQ + |Qpos p1 \Rightarrow + match q with + [OQ \Rightarrow OQ + |Qpos q1 \Rightarrow Qpos (rtimes p1 q1) + |Qneg q1 \Rightarrow Qneg (rtimes p1 q1) + ] + |Qneg p1 \Rightarrow + match q with + [OQ \Rightarrow OQ + |Qpos q1 \Rightarrow Qneg (rtimes p1 q1) + |Qneg q1 \Rightarrow Qpos (rtimes p1 q1) + ] + ] +. + \ No newline at end of file