X-Git-Url: http://matita.cs.unibo.it/gitweb/?p=helm.git;a=blobdiff_plain;f=matita%2Flibrary%2FZ%2Fsigma_p.ma;fp=matita%2Flibrary%2FZ%2Fsigma_p.ma;h=71340ac7c21a84523f1aa0fcf4ca5410341b7329;hp=0000000000000000000000000000000000000000;hb=f61af501fb4608cc4fb062a0864c774e677f0d76;hpb=58ae1809c352e71e7b5530dc41e2bfc834e1aef1 diff --git a/matita/library/Z/sigma_p.ma b/matita/library/Z/sigma_p.ma new file mode 100644 index 000000000..71340ac7c --- /dev/null +++ b/matita/library/Z/sigma_p.ma @@ -0,0 +1,823 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| A.Asperti, C.Sacerdoti Coen, *) +(* ||A|| E.Tassi, S.Zacchiroli *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU Lesser General Public License Version 2.1 *) +(* *) +(**************************************************************************) + +set "baseuri" "cic:/matita/Z/sigma_p". + +include "Z/times.ma". +include "nat/primes.ma". +include "nat/ord.ma". +include "nat/generic_iter_p.ma". + +(* sigma_p in Z is a specialization of iter_p_gen *) +definition sigma_p: nat \to (nat \to bool) \to (nat \to Z) \to Z \def +\lambda n, p, g. (iter_p_gen n p Z g OZ Zplus). + +theorem symmetricZPlus: symmetric Z Zplus. +change with (\forall a,b:Z. (Zplus a b) = (Zplus b a)). +intros. +rewrite > sym_Zplus. +reflexivity. +qed. + +theorem true_to_sigma_p_Sn: +\forall n:nat. \forall p:nat \to bool. \forall g:nat \to Z. +p n = true \to sigma_p (S n) p g = +(g n)+(sigma_p n p g). +intros. +unfold sigma_p. +apply true_to_iter_p_gen_Sn. +assumption. +qed. + +theorem false_to_sigma_p_Sn: +\forall n:nat. \forall p:nat \to bool. \forall g:nat \to Z. +p n = false \to sigma_p (S n) p g = sigma_p n p g. +intros. +unfold sigma_p. +apply false_to_iter_p_gen_Sn. +assumption. +qed. + +theorem eq_sigma_p: \forall p1,p2:nat \to bool. +\forall g1,g2: nat \to Z.\forall n. +(\forall x. x < n \to p1 x = p2 x) \to +(\forall x. x < n \to g1 x = g2 x) \to +sigma_p n p1 g1 = sigma_p n p2 g2. +intros. +unfold sigma_p. +apply eq_iter_p_gen; + assumption. +qed. + +theorem eq_sigma_p1: \forall p1,p2:nat \to bool. +\forall g1,g2: nat \to Z.\forall n. +(\forall x. x < n \to p1 x = p2 x) \to +(\forall x. x < n \to p1 x = true \to g1 x = g2 x) \to +sigma_p n p1 g1 = sigma_p n p2 g2. +intros. +unfold sigma_p. +apply eq_iter_p_gen1; + assumption. +qed. + +theorem sigma_p_false: +\forall g: nat \to Z.\forall n.sigma_p n (\lambda x.false) g = O. +intros. +unfold sigma_p. +apply iter_p_gen_false. +qed. + +theorem sigma_p_plus: \forall n,k:nat.\forall p:nat \to bool. +\forall g: nat \to Z. +sigma_p (k+n) p g += sigma_p k (\lambda x.p (x+n)) (\lambda x.g (x+n)) + sigma_p n p g. +intros. +unfold sigma_p. +apply (iter_p_gen_plusA Z n k p g OZ Zplus) +[ apply symmetricZPlus. +| intros. + apply cic:/matita/Z/plus/Zplus_z_OZ.con +| apply associative_Zplus +] +qed. + +theorem false_to_eq_sigma_p: \forall n,m:nat.n \le m \to +\forall p:nat \to bool. +\forall g: nat \to Z. (\forall i:nat. n \le i \to i < m \to +p i = false) \to sigma_p m p g = sigma_p n p g. +intros. +unfold sigma_p. +apply (false_to_eq_iter_p_gen); + assumption. +qed. + +theorem sigma_p2 : +\forall n,m:nat. +\forall p1,p2:nat \to bool. +\forall g: nat \to nat \to Z. +sigma_p (n*m) + (\lambda x.andb (p1 (div x m)) (p2 (mod x m))) + (\lambda x.g (div x m) (mod x m)) = +sigma_p n p1 + (\lambda x.sigma_p m p2 (g x)). +intros. +unfold sigma_p. +apply (iter_p_gen2 n m p1 p2 Z g OZ Zplus) +[ apply symmetricZPlus +| apply associative_Zplus +| intros. + apply Zplus_z_OZ +] +qed. + +(* a stronger, dependent version, required e.g. for dirichlet product *) + +theorem sigma_p2' : +\forall n,m:nat. +\forall p1:nat \to bool. +\forall p2:nat \to nat \to bool. +\forall g: nat \to nat \to Z. +sigma_p (n*m) + (\lambda x.andb (p1 (div x m)) (p2 (div x m) (mod x m))) + (\lambda x.g (div x m) (mod x m)) = +sigma_p n p1 + (\lambda x.sigma_p m (p2 x) (g x)). +intros. +unfold sigma_p. +apply (iter_p_gen2' n m p1 p2 Z g OZ Zplus) +[ apply symmetricZPlus +| apply associative_Zplus +| intros. + apply Zplus_z_OZ +] +qed. + +lemma sigma_p_gi: \forall g: nat \to Z. +\forall n,i.\forall p:nat \to bool.i < n \to p i = true \to +sigma_p n p g = g i + sigma_p n (\lambda x. andb (p x) (notb (eqb x i))) g. +intros. +unfold sigma_p. +apply (iter_p_gen_gi) +[ apply symmetricZPlus +| apply associative_Zplus +| intros. + apply Zplus_z_OZ +| assumption +| assumption +] +qed. + +theorem eq_sigma_p_gh: +\forall g: nat \to Z. +\forall h,h1: nat \to nat.\forall n,n1. +\forall p1,p2:nat \to bool. +(\forall i. i < n \to p1 i = true \to p2 (h i) = true) \to +(\forall i. i < n \to p1 i = true \to h1 (h i) = i) \to +(\forall i. i < n \to p1 i = true \to h i < n1) \to +(\forall j. j < n1 \to p2 j = true \to p1 (h1 j) = true) \to +(\forall j. j < n1 \to p2 j = true \to h (h1 j) = j) \to +(\forall j. j < n1 \to p2 j = true \to h1 j < n) \to +sigma_p n p1 (\lambda x.g(h x)) = sigma_p n1 p2 g. +intros. +unfold sigma_p. +apply (eq_iter_p_gen_gh Z OZ Zplus ? ? ? g h h1 n n1 p1 p2) +[ apply symmetricZPlus +| apply associative_Zplus +| intros. + apply Zplus_z_OZ +| assumption +| assumption +| assumption +| assumption +| assumption +| assumption +] +qed. + + +theorem divides_exp_to_lt_ord:\forall n,m,j,p. O < n \to prime p \to +p \ndivides n \to j \divides n*(exp p m) \to ord j p < S m. +intros. +cut (m = ord (n*(exp p m)) p) + [apply le_S_S. + rewrite > Hcut. + apply divides_to_le_ord + [elim (le_to_or_lt_eq ? ? (le_O_n j)) + [assumption + |apply False_ind. + apply (lt_to_not_eq ? ? H). + elim H3. + rewrite < H4 in H5.simplify in H5. + elim (times_O_to_O ? ? H5) + [apply sym_eq.assumption + |apply False_ind. + apply (not_le_Sn_n O). + rewrite < H6 in \vdash (? ? %). + apply lt_O_exp. + elim H1.apply lt_to_le.assumption + ] + ] + |rewrite > (times_n_O O). + apply lt_times + [assumption|apply lt_O_exp.apply (prime_to_lt_O ? H1)] + |assumption + |assumption + ] + |unfold ord. + rewrite > (p_ord_exp1 p ? m n) + [reflexivity + |apply (prime_to_lt_O ? H1) + |assumption + |apply sym_times + ] + ] +qed. + +theorem divides_exp_to_divides_ord_rem:\forall n,m,j,p. O < n \to prime p \to +p \ndivides n \to j \divides n*(exp p m) \to ord_rem j p \divides n. +intros. +cut (O < j) + [cut (n = ord_rem (n*(exp p m)) p) + [rewrite > Hcut1. + apply divides_to_divides_ord_rem + [assumption + |rewrite > (times_n_O O). + apply lt_times + [assumption|apply lt_O_exp.apply (prime_to_lt_O ? H1)] + |assumption + |assumption + ] + |unfold ord_rem. + rewrite > (p_ord_exp1 p ? m n) + [reflexivity + |apply (prime_to_lt_O ? H1) + |assumption + |apply sym_times + ] + ] + |elim (le_to_or_lt_eq ? ? (le_O_n j)) + [assumption + |apply False_ind. + apply (lt_to_not_eq ? ? H). + elim H3. + rewrite < H4 in H5.simplify in H5. + elim (times_O_to_O ? ? H5) + [apply sym_eq.assumption + |apply False_ind. + apply (not_le_Sn_n O). + rewrite < H6 in \vdash (? ? %). + apply lt_O_exp. + elim H1.apply lt_to_le.assumption + ] + ] + ] +qed. + + +theorem sigma_p_divides_b: +\forall n,m,p:nat.O < n \to prime p \to Not (divides p n) \to +\forall g: nat \to Z. +sigma_p (S (n*(exp p m))) (\lambda x.divides_b x (n*(exp p m))) g = +sigma_p (S n) (\lambda x.divides_b x n) + (\lambda x.sigma_p (S m) (\lambda y.true) (\lambda y.g (x*(exp p y)))). +intros. +unfold sigma_p. +apply (iter_p_gen_divides Z OZ Zplus n m p ? ? ? g) +[ assumption +| assumption +| assumption +| apply symmetricZPlus +| apply associative_Zplus +| intros. + apply Zplus_z_OZ +] +qed. + + +(* sigma_p and Ztimes *) +lemma Ztimes_sigma_pl: \forall z:Z.\forall n:nat.\forall p. \forall f. +z * (sigma_p n p f) = sigma_p n p (\lambda i.z*(f i)). +intros. +apply (distributive_times_plus_iter_p_gen Z Zplus OZ Ztimes n z p f) +[ apply symmetricZPlus +| apply associative_Zplus +| intros. + apply Zplus_z_OZ +| apply symmetric_Ztimes +| apply distributive_Ztimes_Zplus +| intros. + rewrite > (Ztimes_z_OZ a). + reflexivity +] +qed. + +lemma Ztimes_sigma_pr: \forall z:Z.\forall n:nat.\forall p. \forall f. +(sigma_p n p f) * z = sigma_p n p (\lambda i.(f i)*z). +intros. +rewrite < sym_Ztimes. +rewrite > Ztimes_sigma_pl. +apply eq_sigma_p + [intros.reflexivity + |intros.apply sym_Ztimes + ] +qed. + + +theorem sigma_p_knm: +\forall g: nat \to Z. +\forall h2:nat \to nat \to nat. +\forall h11,h12:nat \to nat. +\forall k,n,m. +\forall p1,p21:nat \to bool. +\forall p22:nat \to nat \to bool. +(\forall x. x < k \to p1 x = true \to +p21 (h11 x) = true \land p22 (h11 x) (h12 x) = true +\land h2 (h11 x) (h12 x) = x +\land (h11 x) < n \land (h12 x) < m) \to +(\forall i,j. i < n \to j < m \to p21 i = true \to p22 i j = true \to +p1 (h2 i j) = true \land +h11 (h2 i j) = i \land h12 (h2 i j) = j +\land h2 i j < k) \to +sigma_p k p1 g= +sigma_p n p21 (\lambda x:nat.sigma_p m (p22 x) (\lambda y. g (h2 x y))). +intros. +unfold sigma_p. +unfold sigma_p in \vdash (? ? ? (? ? ? ? (\lambda x:?.%) ? ?)). +apply iter_p_gen_knm + [ apply symmetricZPlus + |apply associative_Zplus + | intro. + apply (Zplus_z_OZ a) + | exact h11 + | exact h12 + | assumption + | assumption + ] +qed. + + +theorem sigma_p2_eq: +\forall g: nat \to nat \to Z. +\forall h11,h12,h21,h22: nat \to nat \to nat. +\forall n1,m1,n2,m2. +\forall p11,p21:nat \to bool. +\forall p12,p22:nat \to nat \to bool. +(\forall i,j. i < n2 \to j < m2 \to p21 i = true \to p22 i j = true \to +p11 (h11 i j) = true \land p12 (h11 i j) (h12 i j) = true +\land h21 (h11 i j) (h12 i j) = i \land h22 (h11 i j) (h12 i j) = j +\land h11 i j < n1 \land h12 i j < m1) \to +(\forall i,j. i < n1 \to j < m1 \to p11 i = true \to p12 i j = true \to +p21 (h21 i j) = true \land p22 (h21 i j) (h22 i j) = true +\land h11 (h21 i j) (h22 i j) = i \land h12 (h21 i j) (h22 i j) = j +\land (h21 i j) < n2 \land (h22 i j) < m2) \to +sigma_p n1 p11 (\lambda x:nat .sigma_p m1 (p12 x) (\lambda y. g x y)) = +sigma_p n2 p21 (\lambda x:nat .sigma_p m2 (p22 x) (\lambda y. g (h11 x y) (h12 x y))). +intros. +unfold sigma_p. +unfold sigma_p in \vdash (? ? (? ? ? ? (\lambda x:?.%) ? ?) ?). +unfold sigma_p in \vdash (? ? ? (? ? ? ? (\lambda x:?.%) ? ?)). + +apply(iter_p_gen_2_eq Z OZ Zplus ? ? ? g h11 h12 h21 h22 n1 m1 n2 m2 p11 p21 p12 p22) +[ apply symmetricZPlus +| apply associative_Zplus +| intro. + apply (Zplus_z_OZ a) +| assumption +| assumption +] +qed. + + + + +(* + + + + + +rewrite < sigma_p2'. +letin ha:= (\lambda x,y.(((h11 x y)*m1) + (h12 x y))). +letin ha12:= (\lambda x.(h21 (x/m1) (x \mod m1))). +letin ha22:= (\lambda x.(h22 (x/m1) (x \mod m1))). + +apply (trans_eq ? ? +(sigma_p n2 p21 (\lambda x:nat. sigma_p m2 (p22 x) + (\lambda y:nat.(g (((h11 x y)*m1+(h12 x y))/m1) (((h11 x y)*m1+(h12 x y))\mod m1)) ) ) )) +[ + apply (sigma_p_knm (\lambda e. (g (e/m1) (e \mod m1))) ha ha12 ha22);intros + [ elim (and_true ? ? H3). + cut(O \lt m1) + [ cut(x/m1 < n1) + [ cut((x \mod m1) < m1) + [ elim (H1 ? ? Hcut1 Hcut2 H4 H5). + elim H6.clear H6. + elim H8.clear H8. + elim H6.clear H6. + elim H8.clear H8. + split + [ split + [ split + [ split + [ assumption + | assumption + ] + | rewrite > H11. + rewrite > H10. + apply sym_eq. + apply div_mod. + assumption + ] + | assumption + ] + | assumption + ] + | apply lt_mod_m_m. + assumption + ] + | apply (lt_times_n_to_lt m1) + [ assumption + | apply (le_to_lt_to_lt ? x) + [ apply (eq_plus_to_le ? ? (x \mod m1)). + apply div_mod. + assumption + | assumption + ] + ] + ] + | apply not_le_to_lt.unfold.intro. + generalize in match H2. + apply (le_n_O_elim ? H6). + rewrite < times_n_O. + apply le_to_not_lt. + apply le_O_n. + ] + | elim (H ? ? H2 H3 H4 H5). + elim H6.clear H6. + elim H8.clear H8. + elim H6.clear H6. + elim H8.clear H8. + cut(((h11 i j)*m1 + (h12 i j))/m1 = (h11 i j)) + [ cut(((h11 i j)*m1 + (h12 i j)) \mod m1 = (h12 i j)) + [ split + [ split + [ split + [ apply true_to_true_to_andb_true + [ rewrite > Hcut. + assumption + | rewrite > Hcut1. + rewrite > Hcut. + assumption + ] + | rewrite > Hcut1. + rewrite > Hcut. + assumption + ] + | rewrite > Hcut1. + rewrite > Hcut. + assumption + ] + | cut(O \lt m1) + [ cut(O \lt n1) + [ apply (lt_to_le_to_lt ? ((h11 i j)*m1 + m1) ) + [ apply (lt_plus_r). + assumption + | rewrite > sym_plus. + rewrite > (sym_times (h11 i j) m1). + rewrite > times_n_Sm. + rewrite > sym_times. + apply (le_times_l). + assumption + ] + | apply not_le_to_lt.unfold.intro. + generalize in match H9. + apply (le_n_O_elim ? H8). + apply le_to_not_lt. + apply le_O_n + ] + | apply not_le_to_lt.unfold.intro. + generalize in match H7. + apply (le_n_O_elim ? H8). + apply le_to_not_lt. + apply le_O_n + ] + ] + | rewrite > (mod_plus_times m1 (h11 i j) (h12 i j)). + reflexivity. + assumption + ] + | rewrite > (div_plus_times m1 (h11 i j) (h12 i j)). + reflexivity. + assumption + ] + ] +| apply (eq_sigma_p1) + [ intros. reflexivity + | intros. + apply (eq_sigma_p1) + [ intros. reflexivity + | intros. + rewrite > (div_plus_times) + [ rewrite > (mod_plus_times) + [ reflexivity + | elim (H x x1 H2 H4 H3 H5). + assumption + ] + | elim (H x x1 H2 H4 H3 H5). + assumption + ] + ] + ] +] +qed. + +rewrite < sigma_p2' in \vdash (? ? ? %). +apply sym_eq. +letin h := (\lambda x.(h11 (x/m2) (x\mod m2))*m1 + (h12 (x/m2) (x\mod m2))). +letin h1 := (\lambda x.(h21 (x/m1) (x\mod m1))*m2 + (h22 (x/m1) (x\mod m1))). +apply (trans_eq ? ? + (sigma_p (n2*m2) (\lambda x:nat.p21 (x/m2)\land p22 (x/m2) (x\mod m2)) + (\lambda x:nat.g ((h x)/m1) ((h x)\mod m1)))) + [clear h.clear h1. + apply eq_sigma_p1 + [intros.reflexivity + |intros. + cut (O < m2) + [cut (x/m2 < n2) + [cut (x \mod m2 < m2) + [elim (and_true ? ? H3). + elim (H ? ? Hcut1 Hcut2 H4 H5). + elim H6.clear H6. + elim H8.clear H8. + elim H6.clear H6. + elim H8.clear H8. + apply eq_f2 + [apply sym_eq. + apply div_plus_times. + assumption + | + apply sym_eq. + apply mod_plus_times. + assumption + ] + |apply lt_mod_m_m. + assumption + ] + |apply (lt_times_n_to_lt m2) + [assumption + |apply (le_to_lt_to_lt ? x) + [apply (eq_plus_to_le ? ? (x \mod m2)). + apply div_mod. + assumption + |assumption + ] + ] + ] + |apply not_le_to_lt.unfold.intro. + generalize in match H2. + apply (le_n_O_elim ? H4). + rewrite < times_n_O. + apply le_to_not_lt. + apply le_O_n + ] + ] + |apply (eq_sigma_p_gh ? h h1);intros + [cut (O < m2) + [cut (i/m2 < n2) + [cut (i \mod m2 < m2) + [elim (and_true ? ? H3). + elim (H ? ? Hcut1 Hcut2 H4 H5). + elim H6.clear H6. + elim H8.clear H8. + elim H6.clear H6. + elim H8.clear H8. + cut ((h11 (i/m2) (i\mod m2)*m1+h12 (i/m2) (i\mod m2))/m1 = + h11 (i/m2) (i\mod m2)) + [cut ((h11 (i/m2) (i\mod m2)*m1+h12 (i/m2) (i\mod m2))\mod m1 = + h12 (i/m2) (i\mod m2)) + [rewrite > Hcut3. + rewrite > Hcut4. + rewrite > H6. + rewrite > H12. + reflexivity + |apply mod_plus_times. + assumption + ] + |apply div_plus_times. + assumption + ] + |apply lt_mod_m_m. + assumption + ] + |apply (lt_times_n_to_lt m2) + [assumption + |apply (le_to_lt_to_lt ? i) + [apply (eq_plus_to_le ? ? (i \mod m2)). + apply div_mod. + assumption + |assumption + ] + ] + ] + |apply not_le_to_lt.unfold.intro. + generalize in match H2. + apply (le_n_O_elim ? H4). + rewrite < times_n_O. + apply le_to_not_lt. + apply le_O_n + ] + |cut (O < m2) + [cut (i/m2 < n2) + [cut (i \mod m2 < m2) + [elim (and_true ? ? H3). + elim (H ? ? Hcut1 Hcut2 H4 H5). + elim H6.clear H6. + elim H8.clear H8. + elim H6.clear H6. + elim H8.clear H8. + cut ((h11 (i/m2) (i\mod m2)*m1+h12 (i/m2) (i\mod m2))/m1 = + h11 (i/m2) (i\mod m2)) + [cut ((h11 (i/m2) (i\mod m2)*m1+h12 (i/m2) (i\mod m2))\mod m1 = + h12 (i/m2) (i\mod m2)) + [rewrite > Hcut3. + rewrite > Hcut4. + rewrite > H10. + rewrite > H11. + apply sym_eq. + apply div_mod. + assumption + |apply mod_plus_times. + assumption + ] + |apply div_plus_times. + assumption + ] + |apply lt_mod_m_m. + assumption + ] + |apply (lt_times_n_to_lt m2) + [assumption + |apply (le_to_lt_to_lt ? i) + [apply (eq_plus_to_le ? ? (i \mod m2)). + apply div_mod. + assumption + |assumption + ] + ] + ] + |apply not_le_to_lt.unfold.intro. + generalize in match H2. + apply (le_n_O_elim ? H4). + rewrite < times_n_O. + apply le_to_not_lt. + apply le_O_n + ] + |cut (O < m2) + [cut (i/m2 < n2) + [cut (i \mod m2 < m2) + [elim (and_true ? ? H3). + elim (H ? ? Hcut1 Hcut2 H4 H5). + elim H6.clear H6. + elim H8.clear H8. + elim H6.clear H6. + elim H8.clear H8. + apply lt_times_plus_times + [assumption|assumption] + |apply lt_mod_m_m. + assumption + ] + |apply (lt_times_n_to_lt m2) + [assumption + |apply (le_to_lt_to_lt ? i) + [apply (eq_plus_to_le ? ? (i \mod m2)). + apply div_mod. + assumption + |assumption + ] + ] + ] + |apply not_le_to_lt.unfold.intro. + generalize in match H2. + apply (le_n_O_elim ? H4). + rewrite < times_n_O. + apply le_to_not_lt. + apply le_O_n + ] + |cut (O < m1) + [cut (j/m1 < n1) + [cut (j \mod m1 < m1) + [elim (and_true ? ? H3). + elim (H1 ? ? Hcut1 Hcut2 H4 H5). + elim H6.clear H6. + elim H8.clear H8. + elim H6.clear H6. + elim H8.clear H8. + cut ((h21 (j/m1) (j\mod m1)*m2+h22 (j/m1) (j\mod m1))/m2 = + h21 (j/m1) (j\mod m1)) + [cut ((h21 (j/m1) (j\mod m1)*m2+h22 (j/m1) (j\mod m1))\mod m2 = + h22 (j/m1) (j\mod m1)) + [rewrite > Hcut3. + rewrite > Hcut4. + rewrite > H6. + rewrite > H12. + reflexivity + |apply mod_plus_times. + assumption + ] + |apply div_plus_times. + assumption + ] + |apply lt_mod_m_m. + assumption + ] + |apply (lt_times_n_to_lt m1) + [assumption + |apply (le_to_lt_to_lt ? j) + [apply (eq_plus_to_le ? ? (j \mod m1)). + apply div_mod. + assumption + |assumption + ] + ] + ] + |apply not_le_to_lt.unfold.intro. + generalize in match H2. + apply (le_n_O_elim ? H4). + rewrite < times_n_O. + apply le_to_not_lt. + apply le_O_n + ] + |cut (O < m1) + [cut (j/m1 < n1) + [cut (j \mod m1 < m1) + [elim (and_true ? ? H3). + elim (H1 ? ? Hcut1 Hcut2 H4 H5). + elim H6.clear H6. + elim H8.clear H8. + elim H6.clear H6. + elim H8.clear H8. + cut ((h21 (j/m1) (j\mod m1)*m2+h22 (j/m1) (j\mod m1))/m2 = + h21 (j/m1) (j\mod m1)) + [cut ((h21 (j/m1) (j\mod m1)*m2+h22 (j/m1) (j\mod m1))\mod m2 = + h22 (j/m1) (j\mod m1)) + [rewrite > Hcut3. + rewrite > Hcut4. + rewrite > H10. + rewrite > H11. + apply sym_eq. + apply div_mod. + assumption + |apply mod_plus_times. + assumption + ] + |apply div_plus_times. + assumption + ] + |apply lt_mod_m_m. + assumption + ] + |apply (lt_times_n_to_lt m1) + [assumption + |apply (le_to_lt_to_lt ? j) + [apply (eq_plus_to_le ? ? (j \mod m1)). + apply div_mod. + assumption + |assumption + ] + ] + ] + |apply not_le_to_lt.unfold.intro. + generalize in match H2. + apply (le_n_O_elim ? H4). + rewrite < times_n_O. + apply le_to_not_lt. + apply le_O_n + ] + |cut (O < m1) + [cut (j/m1 < n1) + [cut (j \mod m1 < m1) + [elim (and_true ? ? H3). + elim (H1 ? ? Hcut1 Hcut2 H4 H5). + elim H6.clear H6. + elim H8.clear H8. + elim H6.clear H6. + elim H8.clear H8. + apply (lt_times_plus_times ? ? ? m2) + [assumption|assumption] + |apply lt_mod_m_m. + assumption + ] + |apply (lt_times_n_to_lt m1) + [assumption + |apply (le_to_lt_to_lt ? j) + [apply (eq_plus_to_le ? ? (j \mod m1)). + apply div_mod. + assumption + |assumption + ] + ] + ] + |apply not_le_to_lt.unfold.intro. + generalize in match H2. + apply (le_n_O_elim ? H4). + rewrite < times_n_O. + apply le_to_not_lt. + apply le_O_n + ] + ] + ] +qed. +*) + +