X-Git-Url: http://matita.cs.unibo.it/gitweb/?p=helm.git;a=blobdiff_plain;f=matita%2Flibrary%2Falgebra%2FCoRN%2FSetoids.ma;fp=matita%2Flibrary%2Falgebra%2FCoRN%2FSetoids.ma;h=ddbb807a85643681b923fc6ee91afb367b0d6c50;hp=0000000000000000000000000000000000000000;hb=f61af501fb4608cc4fb062a0864c774e677f0d76;hpb=58ae1809c352e71e7b5530dc41e2bfc834e1aef1 diff --git a/matita/library/algebra/CoRN/Setoids.ma b/matita/library/algebra/CoRN/Setoids.ma new file mode 100644 index 000000000..ddbb807a8 --- /dev/null +++ b/matita/library/algebra/CoRN/Setoids.ma @@ -0,0 +1,1282 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| A.Asperti, C.Sacerdoti Coen, *) +(* ||A|| E.Tassi, S.Zacchiroli *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU Lesser General Public License Version 2.1 *) +(* *) +(**************************************************************************) + +set "baseuri" "cic:/matita/algebra/CoRN/Setoid". + + +include "higher_order_defs/relations.ma". +include "Z/plus.ma". + +include "datatypes/constructors.ma". +include "nat/nat.ma". +include "logic/equality.ma". +(*include "Z/Zminus.ma".*) + +(* Setoids +Definition of a constructive setoid with apartness, +i.e. a set with an equivalence relation and an apartness relation compatible with it. +*) + +(* Definition of Setoid +Apartness, being the main relation, needs to be [CProp]-valued. Equality, +as it is characterized by a negative statement, lives in [Prop]. + +N.B. for the moment we use Prop for both (Matita group) +*) + +record is_CSetoid (A : Type) (eq : relation A) (ap : relation A) : Prop \def + {ax_ap_irreflexive : irreflexive A ap; + ax_ap_symmetric : symmetric A ap; + ax_ap_cotransitive : cotransitive A ap; + ax_ap_tight : tight_apart A eq ap}. + +record CSetoid : Type \def + {cs_crr :> Type; + cs_eq : relation cs_crr; + cs_ap : relation cs_crr; + cs_proof : is_CSetoid cs_crr cs_eq cs_ap}. + +interpretation "setoid equality" + 'eq x y = (cic:/matita/algebra/CoRN/Setoids/cs_eq.con _ x y). + +interpretation "setoid apart" + 'neq x y = (cic:/matita/algebra/CoRN/Setoids/cs_ap.con _ x y). + +(* visto che sia "ap" che "eq" vanno in Prop e data la "tight-apartness", +"cs_neq" e "ap" non sono la stessa cosa? *) +definition cs_neq : \forall S : CSetoid. relation S \def + \lambda S : CSetoid. \lambda x,y : S. \not x = y. + +lemma CSetoid_is_CSetoid : + \forall S : CSetoid. is_CSetoid S (cs_eq S) (cs_ap S). +intro. apply (cs_proof S). +qed. + +lemma ap_irreflexive: \forall S : CSetoid. irreflexive S (cs_ap S). +intro. elim (CSetoid_is_CSetoid S). assumption. +qed. + +lemma ap_symmetric : \forall S : CSetoid. symmetric S(cs_ap S). +intro. elim (CSetoid_is_CSetoid S). assumption. +qed. + +lemma ap_cotransitive : \forall S : CSetoid. cotransitive S (cs_ap S). +intro. elim (CSetoid_is_CSetoid S). assumption. +qed. + +lemma ap_tight : \forall S : CSetoid. tight_apart S (cs_eq S) (cs_ap S). +intro. elim (CSetoid_is_CSetoid S). assumption. +qed. + +definition ex_unq : \forall S : CSetoid. (S \to Prop) \to Prop \def + \lambda S : CSetoid. \lambda P : S \to Prop. + ex2 S (\lambda x. \forall y : S. P y \to x = y) P. + + +lemma eq_reflexive : \forall S : CSetoid. reflexive S (cs_eq S). +intro. unfold. intro. +generalize in match (ap_tight S x x). +intro. +generalize in match (ap_irreflexive S x); +elim H. apply H1. assumption. +qed. + +axiom eq_symmetric : \forall S : CSetoid. symmetric S (cs_eq S). +(* +lemma eq_symmetric : \forall S : CSetoid. symmetric S (cs_eq S). +intro. unfold. intros. +generalize in match (ap_tight S x y). intro. +generalize in match (ap_tight S y x). intro. +generalize in match (ap_symmetric S y x). intro. +elim H1. clear H1. +elim H2. clear H2. +apply H1. unfold. intro. autobatch. +qed. +*) +lemma eq_transitive : \forall S : CSetoid. transitive S (cs_eq S). +intro. unfold. intros (x y z H H0). +generalize in match (ap_tight S x y). intro. +generalize in match (ap_tight S y z). intro. +generalize in match (ap_tight S x z). intro. +elim H3. +apply H4. unfold. intro. +generalize in match (ap_cotransitive ? ? ? H6 y). intro H7. +elim H1 (H1' H1''). clear H1. +elim H2 (H2' H2''). clear H2. +elim H3 (H3' H3''). clear H3. +elim H7 (H1). clear H7. +generalize in match H1. apply H1''. assumption. (*non ho capito il secondo passo*) +generalize in match H1. apply H2''. assumption. +qed. + +lemma eq_reflexive_unfolded : \forall S:CSetoid. \forall x:S. x = x. +apply eq_reflexive. +qed. + +lemma eq_symmetric_unfolded : \forall S:CSetoid. \forall x,y:S. x = y \to y = x. +apply eq_symmetric. +qed. + +lemma eq_transitive_unfolded : \forall S:CSetoid. \forall x,y,z:S. x = y \to y = z \to x = z. +apply eq_transitive. +qed. + + +lemma eq_wdl : \forall S:CSetoid. \forall x,y,z:S. x = y \to x = z \to z = y. +intros. +(* perche' autobatch non arriva in fondo ??? *) +apply (eq_transitive_unfolded ? ? x). +apply eq_symmetric_unfolded. +exact H1. +exact H. +qed. + + +lemma ap_irreflexive_unfolded : \forall S:CSetoid. \forall x:S. \not (x \neq x). +apply ap_irreflexive. +qed. + +lemma ap_cotransitive_unfolded : \forall S:CSetoid. \forall a,b:S. a \neq b \to + \forall c:S. a \neq c \or c \neq b. +apply ap_cotransitive. +qed. + +lemma ap_symmetric_unfolded : \forall S:CSetoid. \forall x,y:S. + x \neq y \to y \neq x. +apply ap_symmetric. +qed. + +lemma eq_imp_not_ap : \forall S:CSetoid. \forall x,y:S. + x = y \to \not (x \neq y). +intros. +elim (ap_tight S x y). +apply H2. assumption. +qed. + +lemma not_ap_imp_eq : \forall S:CSetoid. \forall x,y:S. + \not (x \neq y) \to x = y. +intros. +elim (ap_tight S x y). +apply H1. assumption. +qed. + +lemma neq_imp_notnot_ap : \forall S:CSetoid. \forall x,y:S. + (cs_neq S x y) \to \not \not (x \neq y). +intros. unfold. intro. +apply H. +apply not_ap_imp_eq. +assumption. +qed. + +lemma notnot_ap_imp_neq: \forall S:CSetoid. \forall x,y:S. + (\not \not (x \neq y)) \to (cs_neq S x y). +intros. unfold. unfold. intro. +apply H. +apply eq_imp_not_ap. +assumption. +qed. + +lemma ap_imp_neq : \forall S:CSetoid. \forall x,y:S. + x \neq y \to (cs_neq S x y). +intros. unfold. unfold. intro. +apply (eq_imp_not_ap S ? ? H1). +assumption. +qed. + +lemma not_neq_imp_eq : \forall S:CSetoid. \forall x,y:S. + \not (cs_neq S x y) \to x = y. +intros. +apply not_ap_imp_eq. +unfold. intro. +apply H. +apply ap_imp_neq. +assumption. +qed. + +lemma eq_imp_not_neq : \forall S:CSetoid. \forall x,y:S. + x = y \to \not (cs_neq S x y). +intros. unfold. intro. +apply H1. +assumption. +qed. + + + +(* -----------------The product of setoids----------------------- *) + +definition prod_ap: \forall A,B : CSetoid.\forall c,d: Prod A B. Prop \def +\lambda A,B : CSetoid.\lambda c,d: Prod A B. + ((cs_ap A (fst A B c) (fst A B d)) \or + (cs_ap B (snd A B c) (snd A B d))). + +definition prod_eq: \forall A,B : CSetoid.\forall c,d: Prod A B. Prop \def +\lambda A,B : CSetoid.\lambda c,d: Prod A B. + ((cs_eq A (fst A B c) (fst A B d)) \and + (cs_eq B (snd A B c) (snd A B d))). + + +lemma prodcsetoid_is_CSetoid: \forall A,B: CSetoid. + is_CSetoid (Prod A B) (prod_eq A B) (prod_ap A B). +intros. +apply (mk_is_CSetoid ? (prod_eq A B) (prod_ap A B)) + [unfold. + intros. + elim x. + unfold. + unfold prod_ap. simplify. + intros. + elim H + [apply (ap_irreflexive A t H1) + |apply (ap_irreflexive B t1 H1) + ] + |unfold. + intros 2. + elim x 2. + elim y 2. + unfold prod_ap. simplify. + intro. + elim H + [left. apply ap_symmetric. assumption. + |right. apply ap_symmetric. assumption + ] + |unfold. + intros 2. + elim x 2. + elim y 4. + elim z. + unfold prod_ap in H. simplify in H. + unfold prod_ap. simplify. + elim H + [cut ((t \neq t4) \or (t4 \neq t2)) + [elim Hcut + [left. left. assumption + |right. left. assumption + ] + |apply (ap_cotransitive A). assumption + ] + |cut ((t1 \neq t5) \or (t5 \neq t3)) + [elim Hcut + [left. right. assumption + |right. right. assumption + ] + |apply (ap_cotransitive B). assumption. + ] + ] +|unfold. + intros 2. + elim x 2. + elim y 2. + unfold prod_ap. simplify. + split + [intro. + left + [apply not_ap_imp_eq. + unfold. intro. apply H. + left. assumption + |apply not_ap_imp_eq. + unfold. intro. apply H. + right. assumption + ] + |intro. unfold. intro. + elim H. + elim H1 + [apply (eq_imp_not_ap A t t2 H2). assumption + |apply (eq_imp_not_ap B t1 t3 H3). assumption + ] + ] +] +qed. + + +definition ProdCSetoid : \forall A,B: CSetoid. CSetoid \def + \lambda A,B: CSetoid. + mk_CSetoid (Prod A B) (prod_eq A B) (prod_ap A B) (prodcsetoid_is_CSetoid A B). + + + +(* Relations and predicates +Here we define the notions of well-definedness and strong extensionality +on predicates and relations. +*) + + + +(*-----------------------------------------------------------------------*) +(*-------------------------- Predicates on Setoids ----------------------*) +(*-----------------------------------------------------------------------*) + +(* throughout this section consider (S : CSetoid) and (P : S -> Prop) *) + +(* Definition pred_strong_ext : CProp := forall x y : S, P x -> P y or x [#] y. *) +definition pred_strong_ext : \forall S: CSetoid. (S \to Prop) \to Prop \def + \lambda S: CSetoid. \lambda P: S \to Prop. \forall x,y: S. + P x \to (P y \or (x \neq y)). + +(* Definition pred_wd : CProp := forall x y : S, P x -> x [=] y -> P y. *) +definition pred_wd : \forall S: CSetoid. \forall P :S \to Type. Type \def + \lambda S: CSetoid. \lambda P: S \to Type. \forall x,y : S. + P x \to x = y \to P y. + +record wd_pred (S: CSetoid) : Type \def + {wdp_pred :> S \to Prop; + wdp_well_def : pred_wd S wdp_pred}. + +record CSetoid_predicate (S: CSetoid) : Type \def + {csp_pred :> S \to Prop; + csp_strext : pred_strong_ext S csp_pred}. + +lemma csp_wd : \forall S: CSetoid. \forall P: CSetoid_predicate S. + pred_wd S (csp_pred S P). +intros. +elim P. +simplify.unfold pred_wd. +intros. +elim (H x y H1) + [assumption|apply False_ind.apply (eq_imp_not_ap S x y H2 H3)] +qed. + + +(* Same result with CProp instead of Prop: but we just work with Prop (Matita group) *) +(* +Definition pred_strong_ext' : CProp := forall x y : S, P x -> P y or x [#] y. +Definition pred_wd' : Prop := forall x y : S, P x -> x [=] y -> P y. + +Record CSetoid_predicate' : Type := + {csp'_pred :> S -> Prop; + csp'_strext : pred_strong_ext' csp'_pred}. + +Lemma csp'_wd : forall P : CSetoid_predicate', pred_wd' P. +intro P. +intro x; intros y H H0. +elim (csp'_strext P x y H). + +autobatch. + +intro H1. +elimtype False. +generalize H1. +exact (eq_imp_not_ap _ _ _ H0). +Qed. +*) + + + +(*------------------------------------------------------------------------*) +(* --------------------------- Relations on Setoids --------------------- *) +(*------------------------------------------------------------------------*) +(* throughout this section consider (S : CSetoid) and (R : S -> S -> Prop) *) + + +(* Definition rel_wdr : Prop := forall x y z : S, R x y -> y [=] z -> R x z. *) +(* + primo tentativo ma R non e' ben tipato: si puo' fare il cast giusto (carrier di S) + in modo da sfruttare "relation"? + e' concettualmente sbagliato lavorare ad un livello piu' alto (Type) ? *) +(* +definition rel_wdr : \forall S: CSetoid. \forall x,y,z: S. \lambda R: relation S. Prop \def + \lambda S: CSetoid. \lambda x,y,z: S. \lambda R: relation S. + R S x y \to y = z \to R S x z. + +definition rel_wdr : \forall S: CSetoid. \forall x,y,z: (cs_crr S). \lambda R: relation (cs_crr S). Prop \def + \lambda S: CSetoid. \lambda x,y,z: (cs_crr S). \lambda R: relation (cs_crr S). + R (cs_crr S) x y \to y = z \to R (cs_crr S) x z. +*) +definition rel_wdr : \forall S: CSetoid. (S \to S \to Prop) \to Prop \def + \lambda S: CSetoid. \lambda R: (S \to S \to Prop). \forall x,y,z: S. + R x y \to y = z \to R x z. + +(*Definition rel_wdl : Prop := forall x y z : S, R x y -> x [=] z -> R z y.*) +definition rel_wdl : \forall S: CSetoid. (S \to S \to Prop) \to Prop \def + \lambda S: CSetoid. \lambda R: (S \to S \to Prop). \forall x,y,z: S. + R x y \to x = z \to R z y. + +(* Definition rel_strext : CProp := forall x1 x2 y1 y2 : S, R x1 y1 -> (x1 [#] x2 or y1 [#] y2) or R x2 y2. *) +definition rel_strext : \forall S: CSetoid. (S \to S \to Prop) \to Prop \def + \lambda S: CSetoid. \lambda R: (S \to S \to Prop). \forall x1,x2,y1,y2: S. + R x1 y1 \to (x1 \neq x2 \or y1 \neq y2) \or R x2 y2. + + +(* Definition rel_strext_lft : CProp := forall x1 x2 y : S, R x1 y -> x1 [#] x2 or R x2 y. *) +definition rel_strext_lft : \forall S: CSetoid. (S \to S \to Prop) \to Prop \def + \lambda S: CSetoid. \lambda R: (S \to S \to Prop). \forall x1,x2,y: S. + R x1 y \to (x1 \neq x2 \or R x2 y). + +(* Definition rel_strext_rht : CProp := forall x y1 y2 : S, R x y1 -> y1 [#] y2 or R x y2. *) +definition rel_strext_rht : \forall S: CSetoid. (S \to S \to Prop) \to Prop \def + \lambda S: CSetoid. \lambda R: (S \to S \to Prop). \forall x,y1,y2: S. + R x y1 \to (y1 \neq y2 \or R x y2). + + +lemma rel_strext_imp_lftarg : \forall S: CSetoid. \forall R: S \to S \to Prop. + rel_strext S R \to rel_strext_lft S R. +unfold rel_strext. +unfold rel_strext_lft. +intros. +elim (H x1 x2 y y H1) +[elim H2 + [left. assumption + |absurd (y \neq y) [assumption | apply (ap_irreflexive S y)] + ] +|right. assumption +] +qed. + + +lemma rel_strext_imp_rhtarg : \forall S: CSetoid. \forall R: S \to S \to Prop. + rel_strext S R \to rel_strext_rht S R. +unfold rel_strext. +unfold rel_strext_rht. +intros. +elim (H x x y1 y2 H1) +[elim H2 + [absurd (x \neq x) [assumption | apply (ap_irreflexive S x)] + |left. assumption + ] +|right. assumption +] +qed. + + +lemma rel_strextarg_imp_strext : \forall S: CSetoid. \forall R: S \to S \to Prop. + (rel_strext_rht S R) \to (rel_strext_lft S R) \to (rel_strext S R). +unfold rel_strext_rht. +unfold rel_strext_lft. +unfold rel_strext. +intros. +elim ((H x1 y1 y2) H2) +[left. right. assumption +|elim ((H1 x1 x2 y1) H2) + [left. left. assumption + |elim ((H x2 y1 y2) H4) + [left. right. assumption + |right. assumption. + ] + ] +] +qed. + +(* ---------- Definition of a setoid relation ----------------- *) +(* The type of relations over a setoid. *) + +(* TODO +record CSetoid_relation1 (S: CSetoid) : Type \def + {csr_rel : S \to S \to Prop; + csr_wdr : rel_wdr S csr_rel; + csr_wdl : rel_wdl S csr_rel; + csr_strext : rel_strext S csr_rel}. +*) +(* CORN +Record CSetoid_relation : Type := + {csr_rel :> S -> S -> Prop; + csr_wdr : rel_wdr csr_rel; + csr_wdl : rel_wdl csr_rel; + csr_strext : rel_strext csr_rel}. +*) + + +(* ---------- gli stessi risultati di prima ma in CProp ---------*) +(* +Variable R : S -> S -> CProp. +Definition Crel_wdr : CProp := forall x y z : S, R x y -> y [=] z -> R x z. +Definition Crel_wdl : CProp := forall x y z : S, R x y -> x [=] z -> R z y. +Definition Crel_strext : CProp := forall x1 x2 y1 y2 : S, + R x1 y1 -> R x2 y2 or x1 [#] x2 or y1 [#] y2. + +Definition Crel_strext_lft : CProp := forall x1 x2 y : S, R x1 y -> R x2 y or x1 [#] x2. +Definition Crel_strext_rht : CProp := forall x y1 y2 : S, R x y1 -> R x y2 or y1 [#] y2. + +Lemma Crel_strext_imp_lftarg : Crel_strext -> Crel_strext_lft. +Proof. +unfold Crel_strext, Crel_strext_lft in |- *; intros H x1 x2 y H0. +generalize (H x1 x2 y y). +intro H1. +elim (H1 H0). + +autobatch. + +intro H3. +elim H3; intro H4. + +autobatch. +elim (ap_irreflexive _ _ H4). +Qed. + +Lemma Crel_strext_imp_rhtarg : Crel_strext -> Crel_strext_rht. +unfold Crel_strext, Crel_strext_rht in |- *; intros H x y1 y2 H0. +generalize (H x x y1 y2 H0); intro H1. +elim H1; intro H2. + +autobatch. + +elim H2; intro H3. + +elim (ap_irreflexive _ _ H3). + +autobatch. +Qed. + +Lemma Crel_strextarg_imp_strext : + Crel_strext_rht -> Crel_strext_lft -> Crel_strext. +unfold Crel_strext, Crel_strext_lft, Crel_strext_rht in |- *; + intros H H0 x1 x2 y1 y2 H1. +elim (H x1 y1 y2 H1); autobatch. +intro H2. +elim (H0 x1 x2 y2 H2); autobatch. +Qed. +*) + + + + +(* ---- e questo ??????? -----*) + +(*Definition of a [CProp] setoid relation +The type of relations over a setoid. *) +(* +Record CCSetoid_relation : Type := + {Ccsr_rel :> S -> S -> CProp; + Ccsr_strext : Crel_strext Ccsr_rel}. + +Lemma Ccsr_wdr : forall R : CCSetoid_relation, Crel_wdr R. +intro R. +red in |- *; intros x y z H H0. +elim (Ccsr_strext R x x y z H). + +autobatch. + +intro H1; elimtype False. +elim H1; intro H2. + +exact (ap_irreflexive_unfolded _ _ H2). + +generalize H2. +exact (eq_imp_not_ap _ _ _ H0). +Qed. + +Lemma Ccsr_wdl : forall R : CCSetoid_relation, Crel_wdl R. +intro R. +red in |- *; intros x y z H H0. +elim (Ccsr_strext R x z y y H). + +autobatch. + +intro H1; elimtype False. +elim H1; intro H2. + +generalize H2. +exact (eq_imp_not_ap _ _ _ H0). + +exact (ap_irreflexive_unfolded _ _ H2). +Qed. + +Lemma ap_wdr : Crel_wdr (cs_ap (c:=S)). +red in |- *; intros x y z H H0. +generalize (eq_imp_not_ap _ _ _ H0); intro H1. +elim (ap_cotransitive_unfolded _ _ _ H z); intro H2. + +assumption. + +elim H1. +apply ap_symmetric_unfolded. +assumption. +Qed. + +Lemma ap_wdl : Crel_wdl (cs_ap (c:=S)). +red in |- *; intros x y z H H0. +generalize (ap_wdr y x z); intro H1. +apply ap_symmetric_unfolded. +apply H1. + +apply ap_symmetric_unfolded. +assumption. + +assumption. +Qed. + +Lemma ap_wdr_unfolded : forall x y z : S, x [#] y -> y [=] z -> x [#] z. +Proof ap_wdr. + +Lemma ap_wdl_unfolded : forall x y z : S, x [#] y -> x [=] z -> z [#] y. +Proof ap_wdl. + +Lemma ap_strext : Crel_strext (cs_ap (c:=S)). +red in |- *; intros x1 x2 y1 y2 H. +case (ap_cotransitive_unfolded _ _ _ H x2); intro H0. + +autobatch. + +case (ap_cotransitive_unfolded _ _ _ H0 y2); intro H1. + +autobatch. + +right; right. +apply ap_symmetric_unfolded. +assumption. +Qed. + +Definition predS_well_def (P : S -> CProp) : CProp := forall x y : S, + P x -> x [=] y -> P y. + +End CSetoid_relations_and_predicates. + +Declare Left Step ap_wdl_unfolded. +Declare Right Step ap_wdr_unfolded. +*) + + + + + + + + + +(*------------------------------------------------------------------------*) +(* ------------------------- Functions between setoids ------------------ *) +(*------------------------------------------------------------------------*) + +(* Such functions must preserve the setoid equality +and be strongly extensional w.r.t. the apartness, i.e. +if f(x,y) # f(x1,y1), then x # x1 or y # y1. +For every arity this has to be defined separately. *) + +(* throughout this section consider (S1,S2,S3 : CSetoid) and (f : S1 \to S2) *) + +(* First we consider unary functions. *) + +(* +In the following two definitions, +f is a function from (the carrier of) S1 to (the carrier of) S2 *) + +(* Nota: senza le parentesi di (S1 \to S2) non funziona, perche'? *) +definition fun_wd : \forall S1,S2 : CSetoid. (S1 \to S2) \to Prop \def + \lambda S1,S2 : CSetoid.\lambda f : S1 \to S2. \forall x,y : S1. + x = y \to f x = f y. + +definition fun_strext : \forall S1,S2 : CSetoid. (S1 \to S2) \to Prop \def + \lambda S1,S2 : CSetoid.\lambda f : S1 \to S2. \forall x,y : S1. + (f x \neq f y) \to (x \neq y). + +lemma fun_strext_imp_wd : \forall S1,S2 : CSetoid. \forall f : S1 \to S2. + fun_strext S1 S2 f \to fun_wd S1 S2 f. +unfold fun_strext. +unfold fun_wd. +intros. +apply not_ap_imp_eq. +unfold.intro. +apply (eq_imp_not_ap ? ? ? H1). +apply H.assumption. +qed. + +(* funzioni tra setoidi *) +record CSetoid_fun (S1,S2 : CSetoid) : Type \def + {csf_fun : S1 \to S2; + csf_strext : (fun_strext S1 S2 csf_fun)}. + +lemma csf_wd : \forall S1,S2 : CSetoid. \forall f : CSetoid_fun S1 S2. fun_wd S1 S2 (csf_fun S1 S2 f). +intros. +apply fun_strext_imp_wd. +apply csf_strext. +qed. + +definition Const_CSetoid_fun : \forall S1,S2: CSetoid. S2 \to CSetoid_fun S1 S2. +intros. apply (mk_CSetoid_fun S1 S2 (\lambda x:S1.c)). +unfold.intros. +elim (ap_irreflexive ? ? H). +qed. + + +(* ---- Binary functions ------*) +(* throughout this section consider (S1,S2,S3 : CSetoid) and (f : S1 \to S2 \to S3) *) + +definition bin_fun_wd : \forall S1,S2,S3 : CSetoid. (S1 \to S2 \to S3) \to Prop \def + \lambda S1,S2,S3 : CSetoid. \lambda f : S1 \to S2 \to S3. \forall x1,x2: S1. \forall y1,y2: S2. + x1 = x2 \to y1 = y2 \to f x1 y1 = f x2 y2. + +(* +Definition bin_fun_strext : CProp := forall x1 x2 y1 y2, + f x1 y1 [#] f x2 y2 -> x1 [#] x2 or y1 [#] y2. +*) + +definition bin_fun_strext: \forall S1,S2,S3 : CSetoid. (S1 \to S2 \to S3) \to Prop \def + \lambda S1,S2,S3 : CSetoid. \lambda f : S1 \to S2 \to S3. \forall x1,x2: S1. \forall y1,y2: S2. + f x1 y1 \neq f x2 y2 \to x1 \neq x2 \lor y1 \neq y2. + +lemma bin_fun_strext_imp_wd : \forall S1,S2,S3: CSetoid.\forall f:S1 \to S2 \to S3. +bin_fun_strext ? ? ? f \to bin_fun_wd ? ? ? f. +intros.unfold in H. +unfold.intros. +apply not_ap_imp_eq.unfold.intro. +elim (H x1 x2 y1 y2 H3). +apply (eq_imp_not_ap ? ? ? H1 H4). +apply (eq_imp_not_ap ? ? ? H2 H4). +qed. + + + +record CSetoid_bin_fun (S1,S2,S3: CSetoid) : Type \def + {csbf_fun :2> S1 \to S2 \to S3; + csbf_strext : (bin_fun_strext S1 S2 S3 csbf_fun)}. + +lemma csbf_wd : \forall S1,S2,S3: CSetoid. \forall f : CSetoid_bin_fun S1 S2 S3. + bin_fun_wd S1 S2 S3 (csbf_fun S1 S2 S3 f). +intros. +apply bin_fun_strext_imp_wd. +apply csbf_strext. +qed. + +lemma csf_wd_unfolded : \forall S1,S2: CSetoid. \forall f : CSetoid_fun S1 S2. \forall x,x' : S1. + x = x' \to (csf_fun S1 S2 f) x = (csf_fun S1 S2 f) x'. +intros. +apply (csf_wd S1 S2 f x x'). +assumption. +qed. + +lemma csf_strext_unfolded : \forall S1,S2: CSetoid. \forall f : CSetoid_fun S1 S2. \forall x,y : S1. +(csf_fun S1 S2 f) x \neq (csf_fun S1 S2 f) y \to x \neq y. +intros. +apply (csf_strext S1 S2 f x y). +assumption. +qed. + +lemma csbf_wd_unfolded : \forall S1,S2,S3 : CSetoid. \forall f : CSetoid_bin_fun S1 S2 S3. \forall x,x':S1. +\forall y,y' : S2. x = x' \to y = y' \to (csbf_fun S1 S2 S3 f) x y = (csbf_fun S1 S2 S3 f) x' y'. +intros. +apply (csbf_wd S1 S2 S3 f x x' y y'); assumption. +qed. + +(* Hint Resolve csf_wd_unfolded csbf_wd_unfolded: algebra_c.*) + +(* The unary and binary (inner) operations on a csetoid +An operation is a function with domain(s) and co-domain equal. *) + +(* Properties of binary operations *) + +definition commutes : \forall S: CSetoid. (S \to S \to S) \to Prop \def + \lambda S: CSetoid. \lambda f : S \to S \to S. + \forall x,y : S. f x y = f y x. + +definition CSassociative : \forall S: CSetoid. \forall f: S \to S \to S. Prop \def +\lambda S: CSetoid. \lambda f : S \to S \to S. +\forall x,y,z : S. + f x (f y z) = f (f x y) z. + +definition un_op_wd : \forall S:CSetoid. (S \to S) \to Prop \def +\lambda S: CSetoid. \lambda f: (S \to S). fun_wd S S f. + + +definition un_op_strext: \forall S:CSetoid. (S \to S) \to Prop \def +\lambda S:CSetoid. \lambda f: (S \to S). fun_strext S S f. + + +definition CSetoid_un_op : CSetoid \to Type \def +\lambda S:CSetoid. CSetoid_fun S S. + +definition mk_CSetoid_un_op : \forall S:CSetoid. \forall f: S \to S. fun_strext S S f \to CSetoid_fun S S + \def +\lambda S:CSetoid. \lambda f: S \to S. mk_CSetoid_fun S S f. + +lemma id_strext : \forall S:CSetoid. un_op_strext S (\lambda x:S. x). +unfold un_op_strext. +unfold fun_strext. +intros. +simplify in H. +exact H. +qed. + +lemma id_pres_eq : \forall S:CSetoid. un_op_wd S (\lambda x : S.x). +unfold un_op_wd. +unfold fun_wd. +intros. +simplify. +exact H. +qed. + +definition id_un_op : \forall S:CSetoid. CSetoid_un_op S + \def \lambda S: CSetoid. mk_CSetoid_un_op S (\lambda x : cs_crr S.x) (id_strext S). + +definition un_op_fun: \forall S:CSetoid. CSetoid_un_op S \to CSetoid_fun S S +\def \lambda S.\lambda f.f. + +coercion cic:/matita/algebra/CoRN/Setoids/un_op_fun.con. + +definition cs_un_op_strext : \forall S:CSetoid. \forall f: CSetoid_fun S S. fun_strext S S (csf_fun S S f) \def +\lambda S:CSetoid. \lambda f : CSetoid_fun S S. csf_strext S S f. + +lemma un_op_wd_unfolded : \forall S:CSetoid. \forall op : CSetoid_un_op S. +\forall x, y : S. +x = y \to (csf_fun S S op) x = (csf_fun S S op) y. +intros. +apply (csf_wd S S ?).assumption. +qed. + +lemma un_op_strext_unfolded : \forall S:CSetoid. \forall op : CSetoid_un_op S. +\forall x, y : S. + (csf_fun S S op) x \neq (csf_fun S S op) y \to x \neq y. +exact cs_un_op_strext. +qed. + + +(* Well-defined binary operations on a setoid. *) + +definition bin_op_wd : \forall S:CSetoid. (S \to S \to S) \to Prop \def +\lambda S:CSetoid. bin_fun_wd S S S. + +definition bin_op_strext : \forall S:CSetoid. (S \to S \to S) \to Prop \def +\lambda S:CSetoid. bin_fun_strext S S S. + +definition CSetoid_bin_op : CSetoid \to Type \def +\lambda S:CSetoid. CSetoid_bin_fun S S S. + + +definition mk_CSetoid_bin_op : \forall S:CSetoid. \forall f: S \to S \to S. +bin_fun_strext S S S f \to CSetoid_bin_fun S S S \def + \lambda S:CSetoid. \lambda f: S \to S \to S. + mk_CSetoid_bin_fun S S S f. + +(* da controllare che sia ben tipata +definition cs_bin_op_wd : \forall S:CSetoid. ? \def +\lambda S:CSetoid. csbf_wd S S S. +*) +definition cs_bin_op_wd : \forall S:CSetoid. \forall f: CSetoid_bin_fun S S S. bin_fun_wd S S S (csbf_fun S S S f) \def +\lambda S:CSetoid. csbf_wd S S S. + +definition cs_bin_op_strext : \forall S:CSetoid. \forall f: CSetoid_bin_fun S S S. bin_fun_strext S S S (csbf_fun S S S f) \def +\lambda S:CSetoid. csbf_strext S S S. + + + +(* Identity Coercion bin_op_bin_fun : CSetoid_bin_op >-> CSetoid_bin_fun. *) + +definition bin_op_bin_fun: \forall S:CSetoid. CSetoid_bin_op S \to CSetoid_bin_fun S S S +\def \lambda S.\lambda f.f. + +coercion cic:/matita/algebra/CoRN/Setoids/bin_op_bin_fun.con. + + + + +lemma bin_op_wd_unfolded :\forall S:CSetoid. \forall op : CSetoid_bin_op S. \forall x1, x2, y1, y2 : S. + x1 = x2 \to y1 = y2 \to (csbf_fun S S S op) x1 y1 = (csbf_fun S S S op) x2 y2. +exact cs_bin_op_wd. +qed. + +lemma bin_op_strext_unfolded : \forall S:CSetoid. \forall op : CSetoid_bin_op S. \forall x1, x2, y1, y2 : S. + (csbf_fun S S S op) x1 y1 \neq (csbf_fun S S S op) x2 y2 \to x1 \neq x2 \lor y1 \neq y2. +exact cs_bin_op_strext. +qed. + +lemma bin_op_is_wd_un_op_lft : \forall S:CSetoid. \forall op : CSetoid_bin_op S. \forall c : cs_crr S. + un_op_wd S (\lambda x : cs_crr S. ((csbf_fun S S S op) x c)). +intros. unfold. unfold. +intros. apply bin_op_wd_unfolded [ assumption | apply eq_reflexive_unfolded ] +qed. + +lemma bin_op_is_wd_un_op_rht : \forall S:CSetoid. \forall op : CSetoid_bin_op S. \forall c : cs_crr S. + un_op_wd S (\lambda x : cs_crr S. ((csbf_fun S S S op) c x)). +intros. unfold. unfold. +intros. apply bin_op_wd_unfolded [ apply eq_reflexive_unfolded | assumption ] +qed. + + +lemma bin_op_is_strext_un_op_lft : \forall S:CSetoid. \forall op : CSetoid_bin_op S. \forall c : cs_crr S. + un_op_strext S (\lambda x : cs_crr S. ((csbf_fun S S S op) x c)). +intros. unfold un_op_strext. unfold fun_strext. +intros. +cut (x \neq y \lor c \neq c) +[ elim Hcut + [ assumption + | generalize in match (ap_irreflexive_unfolded ? ? H1). intro. elim H2 + ] +| apply (bin_op_strext_unfolded S op x y c c). assumption. +] +qed. + +lemma bin_op_is_strext_un_op_rht : \forall S:CSetoid. \forall op : CSetoid_bin_op S. \forall c : cs_crr S. + un_op_strext S (\lambda x : cs_crr S. ((csbf_fun S S S op) c x)). +intros. unfold un_op_strext. unfold fun_strext. +intros. +cut (c \neq c \lor x \neq y) +[ elim Hcut + [ generalize in match (ap_irreflexive_unfolded ? ? H1). intro. elim H2 + | assumption + ] +| apply (bin_op_strext_unfolded S op c c x y). assumption. +] +qed. + +definition bin_op2un_op_rht : \forall S:CSetoid. \forall op : CSetoid_bin_op S. +\forall c : cs_crr S. CSetoid_un_op S \def + \lambda S:CSetoid. \lambda op: CSetoid_bin_op S. \lambda c : cs_crr S. + mk_CSetoid_un_op S (\lambda x:cs_crr S. ((csbf_fun S S S op) c x)) + (bin_op_is_strext_un_op_rht S op c). + +definition bin_op2un_op_lft : \forall S:CSetoid. \forall op : CSetoid_bin_op S. +\forall c : cs_crr S. CSetoid_un_op S \def + \lambda S:CSetoid. \lambda op: CSetoid_bin_op S. \lambda c : cs_crr S. + mk_CSetoid_un_op S (\lambda x:cs_crr S. ((csbf_fun S S S op) x c)) + (bin_op_is_strext_un_op_lft S op c). + +(* +Definition bin_op2un_op_rht (op : CSetoid_bin_op) (c : S) : CSetoid_un_op := + Build_CSetoid_un_op (fun x : S => op c x) (bin_op_is_strext_un_op_rht op c). + + +Definition bin_op2un_op_lft (op : CSetoid_bin_op) (c : S) : CSetoid_un_op := + Build_CSetoid_un_op (fun x : S => op x c) (bin_op_is_strext_un_op_lft op c). +*) + + +(* +Implicit Arguments commutes [S]. +Implicit Arguments associative [S]. +Hint Resolve bin_op_wd_unfolded un_op_wd_unfolded: algebra_c. +*) + +(*The binary outer operations on a csetoid*) + + +(* +Well-defined outer operations on a setoid. +*) +definition outer_op_well_def : \forall S1,S2:CSetoid. (S1 \to S2 \to S2) \to Prop \def +\lambda S1,S2:CSetoid. bin_fun_wd S1 S2 S2. + +definition outer_op_strext : \forall S1,S2:CSetoid. (S1 \to S2 \to S2) \to Prop \def +\lambda S1,S2:CSetoid. bin_fun_strext S1 S2 S2. + +definition CSetoid_outer_op : \forall S1,S2:CSetoid.Type \def +\lambda S1,S2:CSetoid. + CSetoid_bin_fun S1 S2 S2. + +definition mk_CSetoid_outer_op : \forall S1,S2:CSetoid. +\forall f : S1 \to S2 \to S2. +bin_fun_strext S1 S2 S2 f \to CSetoid_bin_fun S1 S2 S2 \def +\lambda S1,S2:CSetoid. +mk_CSetoid_bin_fun S1 S2 S2. + +definition csoo_wd : \forall S1,S2:CSetoid. \forall f : CSetoid_bin_fun S1 S2 S2. +bin_fun_wd S1 S2 S2 (csbf_fun S1 S2 S2 f) \def +\lambda S1,S2:CSetoid. +csbf_wd S1 S2 S2. + +definition csoo_strext : \forall S1,S2:CSetoid. +\forall f : CSetoid_bin_fun S1 S2 S2. +bin_fun_strext S1 S2 S2 (csbf_fun S1 S2 S2 f) \def +\lambda S1,S2:CSetoid. +csbf_strext S1 S2 S2. + + +definition outer_op_bin_fun: \forall S:CSetoid. +CSetoid_outer_op S S \to CSetoid_bin_fun S S S +\def \lambda S.\lambda f.f. + +coercion cic:/matita/algebra/CoRN/Setoids/outer_op_bin_fun.con. +(* begin hide +Identity Coercion outer_op_bin_fun : CSetoid_outer_op >-> CSetoid_bin_fun. +end hide *) + +lemma csoo_wd_unfolded :\forall S:CSetoid. \forall op : CSetoid_outer_op S S. +\forall x1, x2, y1, y2 : S. + x1 = x2 -> y1 = y2 -> (csbf_fun S S S op) x1 y1 = (csbf_fun S S S op) x2 y2. +intros. +apply csoo_wd[assumption|assumption] +qed. + +(* +Hint Resolve csoo_wd_unfolded: algebra_c. +*) + + + +(*---------------------------------------------------------------*) +(*--------------------------- Subsetoids ------------------------*) +(*---------------------------------------------------------------*) + +(* Let S be a setoid, and P a predicate on the carrier of S *) +(* Variable P : S -> CProp *) + +record subcsetoid_crr (S: CSetoid) (P: S \to Prop) : Type \def + {scs_elem :> S; + scs_prf : P scs_elem}. + +definition restrict_relation : \forall S:CSetoid. \forall R : S \to S \to Prop. + \forall P: S \to Prop. relation (subcsetoid_crr S P) \def + \lambda S:CSetoid. \lambda R : S \to S \to Prop. + \lambda P: S \to Prop. \lambda a,b: subcsetoid_crr S P. + match a with + [ (mk_subcsetoid_crr x H) \Rightarrow + match b with + [ (mk_subcsetoid_crr y H) \Rightarrow R x y ] + ]. +(* CPROP +definition Crestrict_relation (R : Crelation S) : Crelation subcsetoid_crr := + fun a b : subcsetoid_crr => + match a, b with + | Build_subcsetoid_crr x _, Build_subcsetoid_crr y _ => R x y + end. +*) + +definition subcsetoid_eq : \forall S:CSetoid. \forall P: S \to Prop. + relation (subcsetoid_crr S P)\def + \lambda S:CSetoid. + restrict_relation S (cs_eq S). + +definition subcsetoid_ap : \forall S:CSetoid. \forall P: S \to Prop. + relation (subcsetoid_crr S P)\def + \lambda S:CSetoid. + restrict_relation S (cs_ap S). + +(* N.B. da spostare in relations.ma... *) +definition equiv : \forall A: Type. \forall R: relation A. Prop \def + \lambda A: Type. \lambda R: relation A. + (reflexive A R) \land (transitive A R) \land (symmetric A R). + +remark subcsetoid_equiv : \forall S:CSetoid. \forall P: S \to Prop. +equiv ? (subcsetoid_eq S P). +intros. unfold equiv. split +[split + [unfold. intro. elim x. simplify. apply (eq_reflexive S) + |unfold. intros 3. elim y 2. + elim x 2. elim z 2. simplify. + exact (eq_transitive ? c1 c c2) + ] +| unfold. intros 2. elim x 2. elim y 2. simplify. exact (eq_symmetric ? c c1). +] +qed. + +(* +axiom subcsetoid_is_CSetoid : \forall S:CSetoid. \forall P: S \to Prop. +is_CSetoid ? (subcsetoid_eq S P) (subcsetoid_ap S P). +*) + +lemma subcsetoid_is_CSetoid : \forall S:CSetoid. \forall P: S \to Prop. +is_CSetoid ? (subcsetoid_eq S P) (subcsetoid_ap S P). +intros. +apply (mk_is_CSetoid ? (subcsetoid_eq S P) (subcsetoid_ap S P)) +[ unfold. intros.unfold. elim x. exact (ap_irreflexive_unfolded S ? ?) + [ assumption | simplify in H1. exact H1 ] + (* irreflexive *) +|unfold. intros 2. elim x. generalize in match H1. elim y.simplify in H3. simplify. +exact (ap_symmetric ? ? ? H3) +(* cotransitive *) +|unfold.intros 2. elim x.generalize in match H1. elim y. elim z.simplify. simplify in H3. +apply (ap_cotransitive ? ? ? H3) +(* tight *) +|unfold.intros.elim x. elim y.simplify. +apply (ap_tight S ? ?)] +qed. + + +definition mk_SubCSetoid : \forall S:CSetoid. \forall P: S \to Prop. CSetoid \def +\lambda S:CSetoid. \lambda P:S \to Prop. +mk_CSetoid (subcsetoid_crr S P) (subcsetoid_eq S P) (subcsetoid_ap S P) (subcsetoid_is_CSetoid S P). + +(* Subsetoid unary operations +%\begin{convention}% +Let [f] be a unary setoid operation on [S]. +%\end{convention}% +*) + +(* Section SubCSetoid_unary_operations. +Variable f : CSetoid_un_op S. +*) + +definition un_op_pres_pred : \forall S:CSetoid. \forall P: S \to Prop. + CSetoid_un_op S \to Prop \def + \lambda S:CSetoid. \lambda P: S \to Prop. \lambda f: CSetoid_un_op S. + \forall x : cs_crr S. P x \to P ((csf_fun S S f) x). + +definition restr_un_op : \forall S:CSetoid. \forall P: S \to Prop. + \forall f: CSetoid_un_op S. \forall pr: un_op_pres_pred S P f. + subcsetoid_crr S P \to subcsetoid_crr S P \def + \lambda S:CSetoid. \lambda P: S \to Prop. \lambda f: CSetoid_un_op S. + \lambda pr : un_op_pres_pred S P f.\lambda a: subcsetoid_crr S P. + match a with + [ (mk_subcsetoid_crr x p) \Rightarrow + (mk_subcsetoid_crr ? ? ((csf_fun S S f) x) (pr x p))]. + +(* TODO *) +lemma restr_un_op_wd : \forall S:CSetoid. \forall P: S \to Prop. +\forall f: CSetoid_un_op S. \forall pr: un_op_pres_pred S P f. +un_op_wd (mk_SubCSetoid S P) (restr_un_op S P f pr). +intros. +unfold.unfold.intros 2.elim x 2.elim y 2. +simplify. +intro. +normalize in H2. +apply (un_op_wd_unfolded ? f ? ? H2). +qed. + +lemma restr_un_op_strext : \forall S:CSetoid. \forall P: S \to Prop. +\forall f: CSetoid_un_op S. \forall pr: un_op_pres_pred S P f. +un_op_strext (mk_SubCSetoid S P) (restr_un_op S P f pr). +intros.unfold.unfold. intros 2.elim y 2. elim x 2. +intros.normalize in H2. +apply (cs_un_op_strext ? f ? ? H2). +qed. + +definition mk_SubCSetoid_un_op : \forall S:CSetoid. \forall P: S \to Prop. \forall f: CSetoid_un_op S. + \forall pr:un_op_pres_pred S P f. CSetoid_un_op (mk_SubCSetoid S P). + intros (S P f pr). + apply (mk_CSetoid_un_op (mk_SubCSetoid S P) (restr_un_op S P f pr) (restr_un_op_strext S P f pr)). + qed. + +(* BUG Universe Inconsistency detected + definition mk_SubCSetoid_un_op : \forall S:CSetoid. \forall P: S \to Prop. \forall f: CSetoid_un_op S. + \forall pr:un_op_pres_pred S P f. CSetoid_un_op (mk_SubCSetoid S P) \def + \lambda S:CSetoid. \lambda P: S \to Prop. \lambda f: CSetoid_un_op S. + \lambda pr:un_op_pres_pred S P f. + mk_CSetoid_un_op (mk_SubCSetoid S P) (restr_un_op S P f pr) (restr_un_op_strext S P f pr). +*) + +(* Subsetoid binary operations +Let [f] be a binary setoid operation on [S]. +*) + +(* Section SubCSetoid_binary_operations. +Variable f : CSetoid_bin_op S. +*) + +definition bin_op_pres_pred : \forall S:CSetoid. \forall P: S \to Prop. +(CSetoid_bin_op S) \to Prop \def + \lambda S:CSetoid. \lambda P: S \to Prop. \lambda f: CSetoid_bin_op S. + \forall x,y : S. P x \to P y \to P ( (csbf_fun S S S f) x y). + +(* +Assume [bin_op_pres_pred]. +*) + +(* Variable pr : bin_op_pres_pred. *) + +definition restr_bin_op : \forall S:CSetoid. \forall P:S \to Prop. + \forall f: CSetoid_bin_op S.\forall op : (bin_op_pres_pred S P f). + \forall a, b : subcsetoid_crr S P. subcsetoid_crr S P \def + \lambda S:CSetoid. \lambda P:S \to Prop. + \lambda f: CSetoid_bin_op S. \lambda pr : (bin_op_pres_pred S P f). + \lambda a, b : subcsetoid_crr S P. + match a with + [ (mk_subcsetoid_crr x p) \Rightarrow + match b with + [ (mk_subcsetoid_crr y q) \Rightarrow + (mk_subcsetoid_crr ? ? ((csbf_fun S S S f) x y) (pr x y p q))] + ]. + + +(* TODO *) +lemma restr_bin_op_well_def : \forall S:CSetoid. \forall P: S \to Prop. +\forall f: CSetoid_bin_op S. \forall pr: bin_op_pres_pred S P f. +bin_op_wd (mk_SubCSetoid S P) (restr_bin_op S P f pr). +intros. +unfold.unfold.intros 2.elim x1 2. elim x2 2.intros 2. elim y1 2. elim y2 2. +simplify. +intros. +normalize in H4. +normalize in H5. +apply (cs_bin_op_wd ? f ? ? ? ? H4 H5). +qed. + +lemma restr_bin_op_strext : \forall S:CSetoid. \forall P: S \to Prop. +\forall f: CSetoid_bin_op S. \forall pr: bin_op_pres_pred S P f. +bin_op_strext (mk_SubCSetoid S P) (restr_bin_op S P f pr). +intros.unfold.unfold. intros 2.elim x1 2. elim x2 2.intros 2. elim y1 2. elim y2 2. +simplify.intros. +normalize in H4. +apply (cs_bin_op_strext ? f ? ? ? ? H4). +qed. + +definition mk_SubCSetoid_bin_op : \forall S:CSetoid. \forall P: S \to Prop. + \forall f: CSetoid_bin_op S. \forall pr: bin_op_pres_pred S P f. + CSetoid_bin_op (mk_SubCSetoid S P). + intros (S P f pr). + apply (mk_CSetoid_bin_op (mk_SubCSetoid S P) (restr_bin_op S P f pr)(restr_bin_op_strext S P f pr)). + qed. + +(* BUG Universe Inconsistency detected +definition mk_SubCSetoid_bin_op : \forall S:CSetoid. \forall P: S \to Prop. + \forall f: CSetoid_bin_op S. \forall pr: bin_op_pres_pred S P f. + CSetoid_bin_op (mk_SubCSetoid S P) \def + \lambda S:CSetoid. \lambda P: S \to Prop. + \lambda f: CSetoid_bin_op S. \lambda pr: bin_op_pres_pred S P f. + mk_CSetoid_bin_op (mk_SubCSetoid S P) (restr_bin_op S P f pr)(restr_bin_op_strext S P f pr). +*) + +lemma restr_f_assoc : \forall S:CSetoid. \forall P: S \to Prop. + \forall f: CSetoid_bin_op S. \forall pr: bin_op_pres_pred S P f. + CSassociative S (csbf_fun S S S f) + \to CSassociative (mk_SubCSetoid S P) (csbf_fun (mk_SubCSetoid S P) (mk_SubCSetoid S P) (mk_SubCSetoid S P) (mk_SubCSetoid_bin_op S P f pr)). +intros 4. +intro. +unfold. +intros 3. +elim z 2.elim y 2. elim x 2. +whd. +apply H. +qed. + +definition caseZ_diff: \forall A:Type.Z \to (nat \to nat \to A) \to A \def +\lambda A:Type.\lambda z:Z.\lambda f:nat \to nat \to A. + match z with + [OZ \Rightarrow f O O + |(pos n) \Rightarrow f (S n) O + |(neg n) \Rightarrow f O (S n)]. + +(* Zminus.ma *) +theorem Zminus_S_S : \forall n,m:nat. +Z_of_nat (S n) - S m = Z_of_nat n - m. +intros. +elim n.elim m.simplify. reflexivity.reflexivity. +elim m.simplify.reflexivity.reflexivity. +qed. + + + +lemma proper_caseZ_diff_CS : \forall CS : CSetoid. \forall f : nat \to nat \to CS. + (\forall m,n,p,q : nat. eq nat (plus m q) (plus n p) \to (f m n) = (f p q)) \to + \forall m,n : nat. caseZ_diff CS (Zminus (Z_of_nat m) (Z_of_nat n)) f = (f m n). +intros. +(* perche' apply nat_elim2 non funziona?? *) +apply (nat_elim2 (\lambda m,n.caseZ_diff CS (Zminus (Z_of_nat m) (Z_of_nat n)) f = f m n)). +intro.simplify. +apply (nat_case n1).simplify. +apply eq_reflexive. +intro.simplify.apply eq_reflexive. +intro.simplify.apply eq_reflexive. +intros 2. +rewrite > (Zminus_S_S n1 m1). +intros. +cut (f n1 m1 = f (S n1) (S m1)). +apply eq_symmetric_unfolded. +apply eq_transitive. +apply f. apply n1. apply m1. +apply eq_symmetric_unfolded.assumption. +apply eq_symmetric_unfolded.assumption. +apply H. +autobatch new. +qed. + +(* +Finally, we characterize functions defined on the natural numbers also as setoid functions, similarly to what we already did for predicates. +*) + + +definition nat_less_n_fun : \forall S:CSetoid. \forall n:nat. ? \def + \lambda S:CSetoid. \lambda n:nat. \lambda f: \forall i:nat. i < n \to S. + \forall i,j : nat. eq nat i j \to (\forall H : i < n. + \forall H' : j < n . (f i H) = (f j H')). + +definition nat_less_n_fun' : \forall S:CSetoid. \forall n:nat. ? \def + \lambda S:CSetoid. \lambda n:nat. \lambda f: \forall i: nat. i <= n \to S. + \forall i,j : nat. eq nat i j \to \forall H : i <= n. + \forall H' : j <= n. f i H = f j H'.