X-Git-Url: http://matita.cs.unibo.it/gitweb/?p=helm.git;a=blobdiff_plain;f=matita%2Flibrary%2Falgebra%2Fgroups.ma;fp=matita%2Flibrary%2Falgebra%2Fgroups.ma;h=9ab695239665e8418d6279f8f1609334e7ddada1;hp=0000000000000000000000000000000000000000;hb=f61af501fb4608cc4fb062a0864c774e677f0d76;hpb=58ae1809c352e71e7b5530dc41e2bfc834e1aef1 diff --git a/matita/library/algebra/groups.ma b/matita/library/algebra/groups.ma new file mode 100644 index 000000000..9ab695239 --- /dev/null +++ b/matita/library/algebra/groups.ma @@ -0,0 +1,326 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| The HELM team. *) +(* ||A|| http://helm.cs.unibo.it *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU General Public License Version 2 *) +(* *) +(**************************************************************************) + +set "baseuri" "cic:/matita/algebra/groups/". + +include "algebra/monoids.ma". +include "nat/le_arith.ma". +include "datatypes/bool.ma". +include "nat/compare.ma". + +record PreGroup : Type ≝ + { premonoid:> PreMonoid; + inv: premonoid -> premonoid + }. + +record isGroup (G:PreGroup) : Prop ≝ + { is_monoid:> isMonoid G; + inv_is_left_inverse: is_left_inverse (mk_Monoid ? is_monoid) (inv G); + inv_is_right_inverse: is_right_inverse (mk_Monoid ? is_monoid) (inv G) + }. + +record Group : Type ≝ + { pregroup:> PreGroup; + group_properties:> isGroup pregroup + }. + +notation "hvbox(x \sup (-1))" with precedence 89 +for @{ 'ginv $x }. + +interpretation "Group inverse" 'ginv x = + (cic:/matita/algebra/groups/inv.con _ x). + +definition left_cancellable ≝ + λT:Type. λop: T -> T -> T. + ∀x. injective ? ? (op x). + +definition right_cancellable ≝ + λT:Type. λop: T -> T -> T. + ∀x. injective ? ? (λz.op z x). + +theorem eq_op_x_y_op_x_z_to_eq: + ∀G:Group. left_cancellable G (op G). +intros; +unfold left_cancellable; +unfold injective; +intros (x y z); +rewrite < (e_is_left_unit ? G); +rewrite < (e_is_left_unit ? G z); +rewrite < (inv_is_left_inverse ? G x); +rewrite > (op_associative ? G); +rewrite > (op_associative ? G); +apply eq_f; +assumption. +qed. + + +theorem eq_op_x_y_op_z_y_to_eq: + ∀G:Group. right_cancellable G (op G). +intros; +unfold right_cancellable; +unfold injective; +simplify;fold simplify (op G); +intros (x y z); +rewrite < (e_is_right_unit ? G); +rewrite < (e_is_right_unit ? G z); +rewrite < (inv_is_right_inverse ? G x); +rewrite < (op_associative ? G); +rewrite < (op_associative ? G); +rewrite > H; +reflexivity. +qed. + +theorem eq_inv_inv_x_x: ∀G:Group. ∀x:G. x \sup -1 \sup -1 = x. +intros; +apply (eq_op_x_y_op_z_y_to_eq ? (x \sup -1)); +rewrite > (inv_is_right_inverse ? G); +rewrite > (inv_is_left_inverse ? G); +reflexivity. +qed. + +theorem eq_opxy_e_to_eq_x_invy: + ∀G:Group. ∀x,y:G. x·y=1 → x=y \sup -1. +intros; +apply (eq_op_x_y_op_z_y_to_eq ? y); +rewrite > (inv_is_left_inverse ? G); +assumption. +qed. + +theorem eq_opxy_e_to_eq_invx_y: + ∀G:Group. ∀x,y:G. x·y=1 → x \sup -1=y. +intros; +apply (eq_op_x_y_op_x_z_to_eq ? x); +rewrite > (inv_is_right_inverse ? G); +symmetry; +assumption. +qed. + +theorem eq_opxy_z_to_eq_x_opzinvy: + ∀G:Group. ∀x,y,z:G. x·y=z → x = z·y \sup -1. +intros; +apply (eq_op_x_y_op_z_y_to_eq ? y); +rewrite > (op_associative ? G); +rewrite > (inv_is_left_inverse ? G); +rewrite > (e_is_right_unit ? G); +assumption. +qed. + +theorem eq_opxy_z_to_eq_y_opinvxz: + ∀G:Group. ∀x,y,z:G. x·y=z → y = x \sup -1·z. +intros; +apply (eq_op_x_y_op_x_z_to_eq ? x); +rewrite < (op_associative ? G); +rewrite > (inv_is_right_inverse ? G); +rewrite > (e_is_left_unit ? G); +assumption. +qed. + +theorem eq_inv_op_x_y_op_inv_y_inv_x: + ∀G:Group. ∀x,y:G. (x·y) \sup -1 = y \sup -1 · x \sup -1. +intros; +apply (eq_op_x_y_op_z_y_to_eq ? (x·y)); +rewrite > (inv_is_left_inverse ? G); +rewrite < (op_associative ? G); +rewrite > (op_associative ? G (y \sup -1)); +rewrite > (inv_is_left_inverse ? G); +rewrite > (e_is_right_unit ? G); +rewrite > (inv_is_left_inverse ? G); +reflexivity. +qed. + +(* Morphisms *) + +record morphism (G,G':Group) : Type ≝ + { image: G → G'; + f_morph: ∀x,y:G.image(x·y) = image x · image y + }. + +notation "hvbox(f˜ x)" with precedence 79 +for @{ 'morimage $f $x }. + +interpretation "Morphism image" 'morimage f x = + (cic:/matita/algebra/groups/image.con _ _ f x). + +theorem morphism_to_eq_f_1_1: + ∀G,G'.∀f:morphism G G'.f˜1 = 1. +intros; +apply (eq_op_x_y_op_z_y_to_eq ? (f˜1)); +rewrite > (e_is_left_unit ? G'); +rewrite < f_morph; +rewrite > (e_is_left_unit ? G); +reflexivity. +qed. + +theorem eq_image_inv_inv_image: + ∀G,G'.∀f:morphism G G'. + ∀x.f˜(x \sup -1) = (f˜x) \sup -1. +intros; +apply (eq_op_x_y_op_z_y_to_eq ? (f˜x)); +rewrite > (inv_is_left_inverse ? G'); +rewrite < f_morph; +rewrite > (inv_is_left_inverse ? G); +apply (morphism_to_eq_f_1_1 ? ? f). +qed. + +record monomorphism (G,G':Group) : Type ≝ + { morphism:> morphism G G'; + injective: injective ? ? (image ? ? morphism) + }. + +(* Subgroups *) + +record subgroup (G:Group) : Type ≝ + { group:> Group; + embed:> monomorphism group G + }. + +notation "hvbox(x \sub H)" with precedence 79 +for @{ 'subgroupimage $H $x }. + +interpretation "Subgroup image" 'subgroupimage H x = + (cic:/matita/algebra/groups/image.con _ _ + (cic:/matita/algebra/groups/morphism_OF_subgroup.con _ H) x). + +definition member_of_subgroup ≝ + λG.λH:subgroup G.λx:G.∃y.x=y \sub H. + +notation "hvbox(x break ∈ H)" with precedence 79 +for @{ 'member_of $x $H }. + +notation "hvbox(x break ∉ H)" with precedence 79 +for @{ 'not_member_of $x $H }. + +interpretation "Member of subgroup" 'member_of x H = + (cic:/matita/algebra/groups/member_of_subgroup.con _ H x). + +interpretation "Not member of subgroup" 'not_member_of x H = + (cic:/matita/logic/connectives/Not.con + (cic:/matita/algebra/groups/member_of_subgroup.con _ H x)). + +(* Left cosets *) + +record left_coset (G:Group) : Type ≝ + { element: G; + subgrp: subgroup G + }. + +(* Here I would prefer 'magma_op, but this breaks something in the next definition *) +interpretation "Left_coset" 'times x C = + (cic:/matita/algebra/groups/left_coset.ind#xpointer(1/1/1) _ x C). + +definition member_of_left_coset ≝ + λG:Group.λC:left_coset G.λx:G. + ∃y.x=(element ? C)·y \sub (subgrp ? C). + +interpretation "Member of left_coset" 'member_of x C = + (cic:/matita/algebra/groups/member_of_left_coset.con _ C x). + +definition left_coset_eq ≝ + λG.λC,C':left_coset G. + ∀x.((element ? C)·x \sub (subgrp ? C)) ∈ C'. + +interpretation "Left cosets equality" 'eq C C' = + (cic:/matita/algebra/groups/left_coset_eq.con _ C C'). + +definition left_coset_disjoint ≝ + λG.λC,C':left_coset G. + ∀x.¬(((element ? C)·x \sub (subgrp ? C)) ∈ C'). + +notation "hvbox(a break ∥ b)" + non associative with precedence 45 +for @{ 'disjoint $a $b }. + +interpretation "Left cosets disjoint" 'disjoint C C' = + (cic:/matita/algebra/groups/left_coset_disjoint.con _ C C'). + +(* The following should be a one-shot alias! *) +alias symbol "member_of" (instance 0) = "Member of subgroup". +theorem member_of_subgroup_op_inv_x_y_to_left_coset_eq: + ∀G.∀x,y.∀H:subgroup G. (x \sup -1 ·y) ∈ H → x*H = y*H. +intros; +simplify; +intro; +unfold member_of_subgroup in H1; +elim H1; +clear H1; +exists; +[ apply (a\sup-1 · x1) +| rewrite > f_morph; + rewrite > eq_image_inv_inv_image; + rewrite < H2; + rewrite > eq_inv_op_x_y_op_inv_y_inv_x; + rewrite > eq_inv_inv_x_x; + rewrite < (op_associative ? G); + rewrite < (op_associative ? G); + rewrite > (inv_is_right_inverse ? G); + rewrite > (e_is_left_unit ? G); + reflexivity +]. +qed. + +theorem Not_member_of_subgroup_to_left_coset_disjoint: + ∀G.∀x,y.∀H:subgroup G.(x \sup -1 ·y) ∉ H → x*H ∥ y*H. +intros; +simplify; +unfold Not; +intros (x'); +apply H1; +unfold member_of_subgroup; +elim H2; +apply (ex_intro ? ? (x'·a \sup -1)); +rewrite > f_morph; +apply (eq_op_x_y_op_z_y_to_eq ? (a \sub H)); +rewrite > (op_associative ? G); +rewrite < H3; +rewrite > (op_associative ? G); +rewrite < f_morph; +rewrite > (inv_is_left_inverse ? H); +rewrite < (op_associative ? G); +rewrite > (inv_is_left_inverse ? G); +rewrite > (e_is_left_unit ? G); +rewrite < (f_morph ? ? H); +rewrite > (e_is_right_unit ? H); +reflexivity. +qed. + +(*CSC: here the coercion Type_of_Group cannot be omitted. Why? *) +theorem in_x_mk_left_coset_x_H: + ∀G.∀x:Type_OF_Group G.∀H:subgroup G.x ∈ (x*H). +intros; +simplify; +apply (ex_intro ? ? 1); +rewrite > morphism_to_eq_f_1_1; +rewrite > (e_is_right_unit ? G); +reflexivity. +qed. + +(* Normal Subgroups *) + +record normal_subgroup (G:Group) : Type ≝ + { ns_subgroup:> subgroup G; + normal:> ∀x:G.∀y:ns_subgroup.(x·y \sub ns_subgroup·x \sup -1) ∈ ns_subgroup + }. + +(*CSC: I have not defined yet right cosets +theorem foo: + ∀G.∀H:normal_subgroup G.∀x.x*H=H*x. +*) +(* +theorem member_of_left_coset_mk_left_coset_x_H_a_to_member_of_left_coset_mk_left_coset_y_H_b_to_member_of_left_coset_mk_left_coset_op_x_y_H_op_a_b: + ∀G.∀H:normal_subgroup G.∀x,y,a,b. + a ∈ (x*H) → b ∈ (y*H) → (a·b) ∈ ((x·y)*H). +intros; +simplify; +qed. +*)