X-Git-Url: http://matita.cs.unibo.it/gitweb/?p=helm.git;a=blobdiff_plain;f=matita%2Flibrary%2Fnat%2Fchinese_reminder.ma;fp=matita%2Flibrary%2Fnat%2Fchinese_reminder.ma;h=2bf3bc59e0d95c00510e827371b9eac04a453d1e;hp=0000000000000000000000000000000000000000;hb=f61af501fb4608cc4fb062a0864c774e677f0d76;hpb=58ae1809c352e71e7b5530dc41e2bfc834e1aef1 diff --git a/matita/library/nat/chinese_reminder.ma b/matita/library/nat/chinese_reminder.ma new file mode 100644 index 000000000..2bf3bc59e --- /dev/null +++ b/matita/library/nat/chinese_reminder.ma @@ -0,0 +1,247 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| A.Asperti, C.Sacerdoti Coen, *) +(* ||A|| E.Tassi, S.Zacchiroli *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU Lesser General Public License Version 2.1 *) +(* *) +(**************************************************************************) + +include "nat/exp.ma". +include "nat/gcd.ma". +include "nat/permutation.ma". +include "nat/congruence.ma". + +theorem and_congruent_congruent: \forall m,n,a,b:nat. O < n \to O < m \to +gcd n m = (S O) \to ex nat (\lambda x. congruent x a m \land congruent x b n). +intros. +cut (\exists c,d.c*n - d*m = (S O) \lor d*m - c*n = (S O)). +elim Hcut.elim H3.elim H4. +apply (ex_intro nat ? ((a+b*m)*a1*n-b*a2*m)). +split. +(* congruent to a *) +cut (a1*n = a2*m + (S O)). +rewrite > assoc_times. +rewrite > Hcut1. +rewrite < (sym_plus ? (a2*m)). +rewrite > distr_times_plus. +rewrite < times_n_SO. +rewrite > assoc_plus. +rewrite < assoc_times. +rewrite < times_plus_l. +rewrite > eq_minus_plus_plus_minus. +rewrite < times_minus_l. +rewrite > sym_plus. +apply (eq_times_plus_to_congruent ? ? ? ((b+(a+b*m)*a2)-b*a2)). +assumption.reflexivity. +apply le_times_l. +apply (trans_le ? ((a+b*m)*a2)). +apply le_times_l. +apply (trans_le ? (b*m)). +rewrite > times_n_SO in \vdash (? % ?). +apply le_times_r.assumption. +apply le_plus_n. +apply le_plus_n. +apply minus_to_plus. +apply lt_to_le. +change with (O + a2*m < a1*n). +apply lt_minus_to_plus. +rewrite > H5.unfold lt.apply le_n. +assumption. +(* congruent to b *) +cut (a2*m = a1*n - (S O)). +rewrite > (assoc_times b a2). +rewrite > Hcut1. +rewrite > distr_times_minus. +rewrite < assoc_times. +rewrite < eq_plus_minus_minus_minus. +rewrite < times_n_SO. +rewrite < times_minus_l. +rewrite < sym_plus. +apply (eq_times_plus_to_congruent ? ? ? ((a+b*m)*a1-b*a1)). +assumption.reflexivity. +rewrite > assoc_times. +apply le_times_r. +apply (trans_le ? (a1*n - a2*m)). +rewrite > H5.apply le_n. +apply (le_minus_m ? (a2*m)). +apply le_times_l. +apply le_times_l. +apply (trans_le ? (b*m)). +rewrite > times_n_SO in \vdash (? % ?). +apply le_times_r.assumption. +apply le_plus_n. +apply sym_eq. apply plus_to_minus. +rewrite > sym_plus. +apply minus_to_plus. +apply lt_to_le. +change with (O + a2*m < a1*n). +apply lt_minus_to_plus. +rewrite > H5.unfold lt.apply le_n. +assumption. +(* and now the symmetric case; the price to pay for working + in nat instead than Z *) +apply (ex_intro nat ? ((b+a*n)*a2*m-a*a1*n)). +split. +(* congruent to a *) +cut (a1*n = a2*m - (S O)). +rewrite > (assoc_times a a1). +rewrite > Hcut1. +rewrite > distr_times_minus. +rewrite < assoc_times. +rewrite < eq_plus_minus_minus_minus. +rewrite < times_n_SO. +rewrite < times_minus_l. +rewrite < sym_plus. +apply (eq_times_plus_to_congruent ? ? ? ((b+a*n)*a2-a*a2)). +assumption.reflexivity. +rewrite > assoc_times. +apply le_times_r. +apply (trans_le ? (a2*m - a1*n)). +rewrite > H5.apply le_n. +apply (le_minus_m ? (a1*n)). +rewrite > assoc_times.rewrite > assoc_times. +apply le_times_l. +apply (trans_le ? (a*n)). +rewrite > times_n_SO in \vdash (? % ?). +apply le_times_r.assumption. +apply le_plus_n. +apply sym_eq.apply plus_to_minus. +rewrite > sym_plus. +apply minus_to_plus. +apply lt_to_le. +change with (O + a1*n < a2*m). +apply lt_minus_to_plus. +rewrite > H5.unfold lt.apply le_n. +assumption. +(* congruent to a *) +cut (a2*m = a1*n + (S O)). +rewrite > assoc_times. +rewrite > Hcut1. +rewrite > (sym_plus (a1*n)). +rewrite > distr_times_plus. +rewrite < times_n_SO. +rewrite < assoc_times. +rewrite > assoc_plus. +rewrite < times_plus_l. +rewrite > eq_minus_plus_plus_minus. +rewrite < times_minus_l. +rewrite > sym_plus. +apply (eq_times_plus_to_congruent ? ? ? ((a+(b+a*n)*a1)-a*a1)). +assumption.reflexivity. +apply le_times_l. +apply (trans_le ? ((b+a*n)*a1)). +apply le_times_l. +apply (trans_le ? (a*n)). +rewrite > times_n_SO in \vdash (? % ?). +apply le_times_r. +assumption. +apply le_plus_n. +apply le_plus_n. +apply minus_to_plus. +apply lt_to_le. +change with (O + a1*n < a2*m). +apply lt_minus_to_plus. +rewrite > H5.unfold lt.apply le_n. +assumption. +(* proof of the cut *) +rewrite < H2. +apply eq_minus_gcd. +qed. + +theorem and_congruent_congruent_lt: \forall m,n,a,b:nat. O < n \to O < m \to +gcd n m = (S O) \to +ex nat (\lambda x. (congruent x a m \land congruent x b n) \land + (x < m*n)). +intros.elim (and_congruent_congruent m n a b). +elim H3. +apply (ex_intro ? ? (a1 \mod (m*n))). +split.split. +apply (transitive_congruent m ? a1). +unfold congruent. +apply sym_eq. +change with (congruent a1 (a1 \mod (m*n)) m). +rewrite < sym_times. +apply congruent_n_mod_times. +assumption.assumption.assumption. +apply (transitive_congruent n ? a1). +unfold congruent. +apply sym_eq. +change with (congruent a1 (a1 \mod (m*n)) n). +apply congruent_n_mod_times. +assumption.assumption.assumption. +apply lt_mod_m_m. +rewrite > (times_n_O O). +apply lt_times.assumption.assumption. +assumption.assumption.assumption. +qed. + +definition cr_pair : nat \to nat \to nat \to nat \to nat \def +\lambda n,m,a,b. +min (pred (n*m)) (\lambda x. andb (eqb (x \mod n) a) (eqb (x \mod m) b)). + +theorem cr_pair1: cr_pair (S (S O)) (S (S (S O))) O O = O. +reflexivity. +qed. + +theorem cr_pair2: cr_pair (S(S O)) (S(S(S O))) (S O) O = (S(S(S O))). +simplify. +reflexivity. +qed. + +theorem cr_pair3: cr_pair (S(S O)) (S(S(S O))) (S O) (S(S O)) = (S(S(S(S(S O))))). +reflexivity. +qed. + +theorem cr_pair4: cr_pair (S(S(S(S(S O))))) (S(S(S(S(S(S(S O))))))) (S(S(S O))) (S(S O)) = +(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S O))))))))))))))))))))))). +reflexivity. +qed. + +theorem mod_cr_pair : \forall m,n,a,b. a \lt m \to b \lt n \to +gcd n m = (S O) \to +(cr_pair m n a b) \mod m = a \land (cr_pair m n a b) \mod n = b. +intros. +cut (andb (eqb ((cr_pair m n a b) \mod m) a) + (eqb ((cr_pair m n a b) \mod n) b) = true). +generalize in match Hcut. +apply andb_elim. +apply eqb_elim.intro. +rewrite > H3. +simplify. +intro.split.reflexivity. +apply eqb_true_to_eq.assumption. +intro. +simplify. +intro.apply False_ind. +apply not_eq_true_false.apply sym_eq.assumption. +apply (f_min_aux_true +(\lambda x. andb (eqb (x \mod m) a) (eqb (x \mod n) b)) (pred (m*n)) O). +elim (and_congruent_congruent_lt m n a b). +apply (ex_intro ? ? a1).split.split. +apply le_O_n. +elim H3.apply le_S_S_to_le.apply (trans_le ? (m*n)). +assumption.apply (nat_case (m*n)).apply le_O_n. +intro. +rewrite < pred_Sn. +rewrite < plus_n_O.apply le_n. +elim H3.elim H4. +apply andb_elim. +cut (a1 \mod m = a). +cut (a1 \mod n = b). +rewrite > (eq_to_eqb_true ? ? Hcut). +rewrite > (eq_to_eqb_true ? ? Hcut1). +simplify.reflexivity. +rewrite < (lt_to_eq_mod b n).assumption. +assumption. +rewrite < (lt_to_eq_mod a m).assumption. +assumption. +apply (le_to_lt_to_lt ? b).apply le_O_n.assumption. +apply (le_to_lt_to_lt ? a).apply le_O_n.assumption. +assumption. +qed. \ No newline at end of file