X-Git-Url: http://matita.cs.unibo.it/gitweb/?p=helm.git;a=blobdiff_plain;f=matita%2Flibrary%2Fnat%2Fcompare.ma;fp=matita%2Flibrary%2Fnat%2Fcompare.ma;h=dd9589e7bfab7d75cf8b33d60c0c60d22e34d259;hp=0000000000000000000000000000000000000000;hb=f61af501fb4608cc4fb062a0864c774e677f0d76;hpb=58ae1809c352e71e7b5530dc41e2bfc834e1aef1 diff --git a/matita/library/nat/compare.ma b/matita/library/nat/compare.ma new file mode 100644 index 000000000..dd9589e7b --- /dev/null +++ b/matita/library/nat/compare.ma @@ -0,0 +1,319 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| A.Asperti, C.Sacerdoti Coen, *) +(* ||A|| E.Tassi, S.Zacchiroli *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU Lesser General Public License Version 2.1 *) +(* *) +(**************************************************************************) + +include "datatypes/bool.ma". +include "datatypes/compare.ma". +include "nat/orders.ma". + +let rec eqb n m \def +match n with + [ O \Rightarrow + match m with + [ O \Rightarrow true + | (S q) \Rightarrow false] + | (S p) \Rightarrow + match m with + [ O \Rightarrow false + | (S q) \Rightarrow eqb p q]]. + +theorem eqb_to_Prop: \forall n,m:nat. +match (eqb n m) with +[ true \Rightarrow n = m +| false \Rightarrow n \neq m]. +intros. +apply (nat_elim2 +(\lambda n,m:nat.match (eqb n m) with +[ true \Rightarrow n = m +| false \Rightarrow n \neq m])). +intro.elim n1. +simplify.reflexivity. +simplify.apply not_eq_O_S. +intro. +simplify.unfold Not. +intro. apply (not_eq_O_S n1).apply sym_eq.assumption. +intros.simplify. +generalize in match H. +elim ((eqb n1 m1)). +simplify.apply eq_f.apply H1. +simplify.unfold Not.intro.apply H1.apply inj_S.assumption. +qed. + +theorem eqb_elim : \forall n,m:nat.\forall P:bool \to Prop. +(n=m \to (P true)) \to (n \neq m \to (P false)) \to (P (eqb n m)). +intros. +cut +(match (eqb n m) with +[ true \Rightarrow n = m +| false \Rightarrow n \neq m] \to (P (eqb n m))). +apply Hcut.apply eqb_to_Prop. +elim (eqb n m). +apply ((H H2)). +apply ((H1 H2)). +qed. + +theorem eqb_n_n: \forall n. eqb n n = true. +intro.elim n.simplify.reflexivity. +simplify.assumption. +qed. + +theorem eqb_true_to_eq: \forall n,m:nat. +eqb n m = true \to n = m. +intros. +change with +match true with +[ true \Rightarrow n = m +| false \Rightarrow n \neq m]. +rewrite < H. +apply eqb_to_Prop. +qed. + +theorem eqb_false_to_not_eq: \forall n,m:nat. +eqb n m = false \to n \neq m. +intros. +change with +match false with +[ true \Rightarrow n = m +| false \Rightarrow n \neq m]. +rewrite < H. +apply eqb_to_Prop. +qed. + +theorem eq_to_eqb_true: \forall n,m:nat. +n = m \to eqb n m = true. +intros.apply (eqb_elim n m). +intros. reflexivity. +intros.apply False_ind.apply (H1 H). +qed. + +theorem not_eq_to_eqb_false: \forall n,m:nat. +\lnot (n = m) \to eqb n m = false. +intros.apply (eqb_elim n m). +intros. apply False_ind.apply (H H1). +intros.reflexivity. +qed. + +let rec leb n m \def +match n with + [ O \Rightarrow true + | (S p) \Rightarrow + match m with + [ O \Rightarrow false + | (S q) \Rightarrow leb p q]]. + +theorem leb_elim: \forall n,m:nat. \forall P:bool \to Prop. +(n \leq m \to (P true)) \to (n \nleq m \to (P false)) \to +P (leb n m). +apply nat_elim2; intros; simplify + [apply H.apply le_O_n + |apply H1.apply not_le_Sn_O. + |apply H;intros + [apply H1.apply le_S_S.assumption. + |apply H2.unfold Not.intros.apply H3.apply le_S_S_to_le.assumption + ] + ] +qed. + +theorem leb_true_to_le:\forall n,m. +leb n m = true \to (n \le m). +intros 2. +apply leb_elim + [intros.assumption + |intros.destruct H1. + ] +qed. + +theorem leb_false_to_not_le:\forall n,m. +leb n m = false \to \lnot (n \le m). +intros 2. +apply leb_elim + [intros.destruct H1 + |intros.assumption + ] +qed. +(* +theorem decidable_le: \forall n,m. n \leq m \lor n \nleq m. +intros. +apply (leb_elim n m) + [intro.left.assumption + |intro.right.assumption + ] +qed. +*) + +theorem le_to_leb_true: \forall n,m. n \leq m \to leb n m = true. +intros.apply leb_elim;intros + [reflexivity + |apply False_ind.apply H1.apply H. + ] +qed. + +theorem lt_to_leb_false: \forall n,m. m < n \to leb n m = false. +intros.apply leb_elim;intros + [apply False_ind.apply (le_to_not_lt ? ? H1). assumption + |reflexivity + ] +qed. + +theorem leb_to_Prop: \forall n,m:nat. +match (leb n m) with +[ true \Rightarrow n \leq m +| false \Rightarrow n \nleq m]. +apply nat_elim2;simplify + [exact le_O_n + |exact not_le_Sn_O + |intros 2.simplify. + elim ((leb n m));simplify + [apply le_S_S.apply H + |unfold Not.intros.apply H.apply le_S_S_to_le.assumption + ] + ] +qed. + +(* +theorem leb_elim: \forall n,m:nat. \forall P:bool \to Prop. +(n \leq m \to (P true)) \to (n \nleq m \to (P false)) \to +P (leb n m). +intros. +cut +(match (leb n m) with +[ true \Rightarrow n \leq m +| false \Rightarrow n \nleq m] \to (P (leb n m))). +apply Hcut.apply leb_to_Prop. +elim (leb n m). +apply ((H H2)). +apply ((H1 H2)). +qed. +*) + +definition ltb ≝λn,m. leb n m ∧ notb (eqb n m). + +theorem ltb_to_Prop : + ∀n,m. + match ltb n m with + [ true ⇒ n < m + | false ⇒ n ≮ m + ]. +intros; +unfold ltb; +apply leb_elim; +apply eqb_elim; +intros; +simplify; +[ rewrite < H; + apply le_to_not_lt; + constructor 1 +| apply (not_eq_to_le_to_lt ? ? H H1) +| rewrite < H; + apply le_to_not_lt; + constructor 1 +| apply le_to_not_lt; + generalize in match (not_le_to_lt ? ? H1); + clear H1; + intro; + apply lt_to_le; + assumption +]. +qed. + +theorem ltb_elim: ∀n,m:nat. ∀P:bool → Prop. +(n < m → (P true)) → (n ≮ m → (P false)) → +P (ltb n m). +intros. +cut +(match (ltb n m) with +[ true ⇒ n < m +| false ⇒ n ≮ m] → (P (ltb n m))). +apply Hcut.apply ltb_to_Prop. +elim (ltb n m). +apply ((H H2)). +apply ((H1 H2)). +qed. + +let rec nat_compare n m: compare \def +match n with +[ O \Rightarrow + match m with + [ O \Rightarrow EQ + | (S q) \Rightarrow LT ] +| (S p) \Rightarrow + match m with + [ O \Rightarrow GT + | (S q) \Rightarrow nat_compare p q]]. + +theorem nat_compare_n_n: \forall n:nat. nat_compare n n = EQ. +intro.elim n. +simplify.reflexivity. +simplify.assumption. +qed. + +theorem nat_compare_S_S: \forall n,m:nat. +nat_compare n m = nat_compare (S n) (S m). +intros.simplify.reflexivity. +qed. + +theorem nat_compare_pred_pred: +\forall n,m:nat.lt O n \to lt O m \to +eq compare (nat_compare n m) (nat_compare (pred n) (pred m)). +intros. +apply (lt_O_n_elim n H). +apply (lt_O_n_elim m H1). +intros. +simplify.reflexivity. +qed. + +theorem nat_compare_to_Prop: \forall n,m:nat. +match (nat_compare n m) with + [ LT \Rightarrow n < m + | EQ \Rightarrow n=m + | GT \Rightarrow m < n ]. +intros. +apply (nat_elim2 (\lambda n,m.match (nat_compare n m) with + [ LT \Rightarrow n < m + | EQ \Rightarrow n=m + | GT \Rightarrow m < n ])). +intro.elim n1.simplify.reflexivity. +simplify.unfold lt.apply le_S_S.apply le_O_n. +intro.simplify.unfold lt.apply le_S_S. apply le_O_n. +intros 2.simplify.elim ((nat_compare n1 m1)). +simplify. unfold lt. apply le_S_S.apply H. +simplify. apply eq_f. apply H. +simplify. unfold lt.apply le_S_S.apply H. +qed. + +theorem nat_compare_n_m_m_n: \forall n,m:nat. +nat_compare n m = compare_invert (nat_compare m n). +intros. +apply (nat_elim2 (\lambda n,m. nat_compare n m = compare_invert (nat_compare m n))). +intros.elim n1.simplify.reflexivity. +simplify.reflexivity. +intro.elim n1.simplify.reflexivity. +simplify.reflexivity. +intros.simplify.elim H.reflexivity. +qed. + +theorem nat_compare_elim : \forall n,m:nat. \forall P:compare \to Prop. +(n < m \to P LT) \to (n=m \to P EQ) \to (m < n \to P GT) \to +(P (nat_compare n m)). +intros. +cut (match (nat_compare n m) with +[ LT \Rightarrow n < m +| EQ \Rightarrow n=m +| GT \Rightarrow m < n] \to +(P (nat_compare n m))). +apply Hcut.apply nat_compare_to_Prop. +elim ((nat_compare n m)). +apply ((H H3)). +apply ((H1 H3)). +apply ((H2 H3)). +qed.