X-Git-Url: http://matita.cs.unibo.it/gitweb/?p=helm.git;a=blobdiff_plain;f=matita%2Flibrary%2Fnat%2Fexp.ma;fp=matita%2Flibrary%2Fnat%2Fexp.ma;h=c9f2c6984ee6d31aeb1ddc8ab9b96b936b19a9e0;hp=0000000000000000000000000000000000000000;hb=f61af501fb4608cc4fb062a0864c774e677f0d76;hpb=58ae1809c352e71e7b5530dc41e2bfc834e1aef1 diff --git a/matita/library/nat/exp.ma b/matita/library/nat/exp.ma new file mode 100644 index 000000000..c9f2c6984 --- /dev/null +++ b/matita/library/nat/exp.ma @@ -0,0 +1,252 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| A.Asperti, C.Sacerdoti Coen, *) +(* ||A|| E.Tassi, S.Zacchiroli *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU Lesser General Public License Version 2.1 *) +(* *) +(**************************************************************************) + +include "nat/div_and_mod.ma". +include "nat/lt_arith.ma". + +let rec exp n m on m\def + match m with + [ O \Rightarrow (S O) + | (S p) \Rightarrow (times n (exp n p)) ]. + +interpretation "natural exponent" 'exp a b = (cic:/matita/nat/exp/exp.con a b). + +theorem exp_plus_times : \forall n,p,q:nat. +n \sup (p + q) = (n \sup p) * (n \sup q). +intros.elim p. +simplify.rewrite < plus_n_O.reflexivity. +simplify.rewrite > H.symmetry. +apply assoc_times. +qed. + +theorem exp_n_O : \forall n:nat. S O = n \sup O. +intro.simplify.reflexivity. +qed. + +theorem exp_n_SO : \forall n:nat. n = n \sup (S O). +intro.simplify.rewrite < times_n_SO.reflexivity. +qed. + +theorem exp_SO_n : \forall n:nat. S O = (S O) \sup n. +intro.elim n + [reflexivity + |simplify.rewrite < plus_n_O.assumption + ] +qed. + +theorem exp_SSO: \forall n. exp n (S(S O)) = n*n. +intro.simplify. +rewrite < times_n_SO. +reflexivity. +qed. + +theorem exp_exp_times : \forall n,p,q:nat. +(n \sup p) \sup q = n \sup (p * q). +intros. +elim q.simplify.rewrite < times_n_O.simplify.reflexivity. +simplify.rewrite > H.rewrite < exp_plus_times. +rewrite < times_n_Sm.reflexivity. +qed. + +theorem lt_O_exp: \forall n,m:nat. O < n \to O < n \sup m. +intros.elim m.simplify.unfold lt.apply le_n. +simplify.unfold lt.rewrite > times_n_SO. +apply le_times.assumption.assumption. +qed. + +theorem lt_m_exp_nm: \forall n,m:nat. (S O) < n \to m < n \sup m. +intros.elim m.simplify.unfold lt.apply le_n. +simplify.unfold lt. +apply (trans_le ? ((S(S O))*(S n1))). +simplify. +rewrite < plus_n_Sm.apply le_S_S.apply le_S_S. +rewrite < sym_plus. +apply le_plus_n. +apply le_times.assumption.assumption. +qed. + +theorem exp_to_eq_O: \forall n,m:nat. (S O) < n +\to n \sup m = (S O) \to m = O. +intros.apply antisym_le.apply le_S_S_to_le. +rewrite < H1.change with (m < n \sup m). +apply lt_m_exp_nm.assumption. +apply le_O_n. +qed. + +theorem injective_exp_r: \forall n:nat. (S O) < n \to +injective nat nat (\lambda m:nat. n \sup m). +simplify.intros 4. +apply (nat_elim2 (\lambda x,y.n \sup x = n \sup y \to x = y)). +intros.apply sym_eq.apply (exp_to_eq_O n).assumption. +rewrite < H1.reflexivity. +intros.apply (exp_to_eq_O n).assumption.assumption. +intros.apply eq_f. +apply H1. +(* esprimere inj_times senza S *) +cut (\forall a,b:nat.O < n \to n*a=n*b \to a=b). +apply Hcut.simplify.unfold lt.apply le_S_S_to_le. apply le_S. assumption. +assumption. +intros 2. +apply (nat_case n). +intros.apply False_ind.apply (not_le_Sn_O O H3). +intros. +apply (inj_times_r m1).assumption. +qed. + +variant inj_exp_r: \forall p:nat. (S O) < p \to \forall n,m:nat. +p \sup n = p \sup m \to n = m \def +injective_exp_r. + +theorem le_exp: \forall n,m,p:nat. O < p \to n \le m \to exp p n \le exp p m. +apply nat_elim2 + [intros. + apply lt_O_exp.assumption + |intros. + apply False_ind. + apply (le_to_not_lt ? ? ? H1). + apply le_O_n + |intros. + simplify. + apply le_times + [apply le_n + |apply H[assumption|apply le_S_S_to_le.assumption] + ] + ] +qed. + +theorem lt_exp: \forall n,m,p:nat. S O < p \to n < m \to exp p n < exp p m. +apply nat_elim2 + [intros. + apply (lt_O_n_elim ? H1).intro. + simplify.unfold lt. + rewrite > times_n_SO. + apply le_times + [assumption + |apply lt_O_exp. + apply (trans_lt ? (S O))[apply le_n|assumption] + ] + |intros. + apply False_ind. + apply (le_to_not_lt ? ? ? H1). + apply le_O_n + |intros.simplify. + apply lt_times_r1 + [apply (trans_lt ? (S O))[apply le_n|assumption] + |apply H + [apply H1 + |apply le_S_S_to_le.assumption + ] + ] + ] +qed. + +theorem lt_exp1: \forall n,m,p:nat. O < p \to n < m \to exp n p < exp m p. +intros. +elim H + [rewrite < exp_n_SO.rewrite < exp_n_SO.assumption + |simplify. + apply lt_times;assumption + ] +qed. + +theorem le_exp_to_le: +\forall a,n,m. S O < a \to exp a n \le exp a m \to n \le m. +intro. +apply nat_elim2;intros + [apply le_O_n + |apply False_ind. + apply (le_to_not_lt ? ? H1). + simplify. + rewrite > times_n_SO. + apply lt_to_le_to_lt_times + [assumption + |apply lt_O_exp.apply lt_to_le.assumption + |apply lt_O_exp.apply lt_to_le.assumption + ] + |simplify in H2. + apply le_S_S. + apply H + [assumption + |apply (le_times_to_le a) + [apply lt_to_le.assumption|assumption] + ] + ] +qed. + +theorem le_exp_to_le1 : \forall n,m,p.O < p \to exp n p \leq exp m p \to n \leq m. +intros;apply not_lt_to_le;intro;apply (lt_to_not_le ? ? ? H1); +apply lt_exp1;assumption. +qed. + +theorem lt_exp_to_lt: +\forall a,n,m. S O < a \to exp a n < exp a m \to n < m. +intros. +elim (le_to_or_lt_eq n m) + [assumption + |apply False_ind. + apply (lt_to_not_eq ? ? H1). + rewrite < H2. + reflexivity + |apply (le_exp_to_le a) + [assumption + |apply lt_to_le. + assumption + ] + ] +qed. + +theorem lt_exp_to_lt1: +\forall a,n,m. O < a \to exp n a < exp m a \to n < m. +intros. +elim (le_to_or_lt_eq n m) + [assumption + |apply False_ind. + apply (lt_to_not_eq ? ? H1). + rewrite < H2. + reflexivity + |apply (le_exp_to_le1 ? ? a) + [assumption + |apply lt_to_le. + assumption + ] + ] +qed. + +theorem times_exp: +\forall n,m,p. exp n p * exp m p = exp (n*m) p. +intros.elim p + [simplify.reflexivity + |simplify. + rewrite > assoc_times. + rewrite < assoc_times in ⊢ (? ? (? ? %) ?). + rewrite < sym_times in ⊢ (? ? (? ? (? % ?)) ?). + rewrite > assoc_times in ⊢ (? ? (? ? %) ?). + rewrite < assoc_times. + rewrite < H. + reflexivity + ] +qed. + +theorem monotonic_exp1: \forall n. +monotonic nat le (\lambda x.(exp x n)). +unfold monotonic. intros. +simplify.elim n + [apply le_n + |simplify. + apply le_times;assumption + ] +qed. + + + \ No newline at end of file