X-Git-Url: http://matita.cs.unibo.it/gitweb/?p=helm.git;a=blobdiff_plain;f=matita%2Flibrary%2Fnat%2Fgcd.ma;fp=matita%2Flibrary%2Fnat%2Fgcd.ma;h=3db29f622fb95a5e096cb46744928c97bcef9f39;hp=0000000000000000000000000000000000000000;hb=f61af501fb4608cc4fb062a0864c774e677f0d76;hpb=58ae1809c352e71e7b5530dc41e2bfc834e1aef1 diff --git a/matita/library/nat/gcd.ma b/matita/library/nat/gcd.ma new file mode 100644 index 000000000..3db29f622 --- /dev/null +++ b/matita/library/nat/gcd.ma @@ -0,0 +1,934 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| A.Asperti, C.Sacerdoti Coen, *) +(* ||A|| E.Tassi, S.Zacchiroli *) +(* \ / *) +(* \ / Matita is distributed under the terms of the *) +(* v GNU Lesser General Public License Version 2.1 *) +(* *) +(**************************************************************************) + +include "nat/primes.ma". +include "nat/lt_arith.ma". + +let rec gcd_aux p m n: nat \def +match divides_b n m with +[ true \Rightarrow n +| false \Rightarrow + match p with + [O \Rightarrow n + |(S q) \Rightarrow gcd_aux q n (m \mod n)]]. + +definition gcd : nat \to nat \to nat \def +\lambda n,m:nat. + match leb n m with + [ true \Rightarrow + match n with + [ O \Rightarrow m + | (S p) \Rightarrow gcd_aux (S p) m (S p) ] + | false \Rightarrow + match m with + [ O \Rightarrow n + | (S p) \Rightarrow gcd_aux (S p) n (S p) ]]. + +theorem divides_mod: \forall p,m,n:nat. O < n \to p \divides m \to p \divides n \to +p \divides (m \mod n). +intros.elim H1.elim H2. +(* apply (witness ? ? (n2 - n1*(m / n))). *) +apply witness[| +rewrite > distr_times_minus. +rewrite < H3 in \vdash (? ? ? (? % ?)). +rewrite < assoc_times. +rewrite < H4 in \vdash (? ? ? (? ? (? % ?))). +apply sym_eq.apply plus_to_minus. +rewrite > sym_times. +letin x \def div. +rewrite < (div_mod ? ? H). +reflexivity. +] +qed. + +theorem divides_mod_to_divides: \forall p,m,n:nat. O < n \to +p \divides (m \mod n) \to p \divides n \to p \divides m. +intros.elim H1.elim H2. +apply (witness p m ((n1*(m / n))+n2)). +rewrite > distr_times_plus. +rewrite < H3. +rewrite < assoc_times. +rewrite < H4.rewrite < sym_times. +apply div_mod.assumption. +qed. + +theorem divides_gcd_aux_mn: \forall p,m,n. O < n \to n \le m \to n \le p \to +gcd_aux p m n \divides m \land gcd_aux p m n \divides n. +intro.elim p. +absurd (O < n).assumption.apply le_to_not_lt.assumption. +cut ((n1 \divides m) \lor (n1 \ndivides m)). +simplify. +elim Hcut.rewrite > divides_to_divides_b_true. +simplify. +split.assumption.apply (witness n1 n1 (S O)).apply times_n_SO. +assumption.assumption. +rewrite > not_divides_to_divides_b_false. +simplify. +cut (gcd_aux n n1 (m \mod n1) \divides n1 \land +gcd_aux n n1 (m \mod n1) \divides mod m n1). +elim Hcut1. +split.apply (divides_mod_to_divides ? ? n1). +assumption.assumption.assumption.assumption. +apply H. +cut (O \lt m \mod n1 \lor O = mod m n1). +elim Hcut1.assumption. +apply False_ind.apply H4.apply mod_O_to_divides. +assumption.apply sym_eq.assumption. +apply le_to_or_lt_eq.apply le_O_n. +apply lt_to_le. +apply lt_mod_m_m.assumption. +apply le_S_S_to_le. +apply (trans_le ? n1). +change with (m \mod n1 < n1). +apply lt_mod_m_m.assumption.assumption. +assumption.assumption. +apply (decidable_divides n1 m).assumption. +qed. + +theorem divides_gcd_nm: \forall n,m. +gcd n m \divides m \land gcd n m \divides n. +intros. +change with +(match leb n m with + [ true \Rightarrow + match n with + [ O \Rightarrow m + | (S p) \Rightarrow gcd_aux (S p) m (S p) ] + | false \Rightarrow + match m with + [ O \Rightarrow n + | (S p) \Rightarrow gcd_aux (S p) n (S p) ] ] \divides m +\land +match leb n m with + [ true \Rightarrow + match n with + [ O \Rightarrow m + | (S p) \Rightarrow gcd_aux (S p) m (S p) ] + | false \Rightarrow + match m with + [ O \Rightarrow n + | (S p) \Rightarrow gcd_aux (S p) n (S p) ] ] \divides n). +apply (leb_elim n m). +apply (nat_case1 n). +simplify.intros.split. +apply (witness m m (S O)).apply times_n_SO. +apply (witness m O O).apply times_n_O. +intros.change with +(gcd_aux (S m1) m (S m1) \divides m +\land +gcd_aux (S m1) m (S m1) \divides (S m1)). +apply divides_gcd_aux_mn. +unfold lt.apply le_S_S.apply le_O_n. +assumption.apply le_n. +simplify.intro. +apply (nat_case1 m). +simplify.intros.split. +apply (witness n O O).apply times_n_O. +apply (witness n n (S O)).apply times_n_SO. +intros.change with +(gcd_aux (S m1) n (S m1) \divides (S m1) +\land +gcd_aux (S m1) n (S m1) \divides n). +cut (gcd_aux (S m1) n (S m1) \divides n +\land +gcd_aux (S m1) n (S m1) \divides S m1). +elim Hcut.split.assumption.assumption. +apply divides_gcd_aux_mn. +unfold lt.apply le_S_S.apply le_O_n. +apply not_lt_to_le.unfold Not. unfold lt.intro.apply H. +rewrite > H1.apply (trans_le ? (S n)). +apply le_n_Sn.assumption.apply le_n. +qed. + +theorem divides_gcd_n: \forall n,m. gcd n m \divides n. +intros. +exact (proj2 ? ? (divides_gcd_nm n m)). +qed. + +theorem divides_gcd_m: \forall n,m. gcd n m \divides m. +intros. +exact (proj1 ? ? (divides_gcd_nm n m)). +qed. + + +theorem divides_times_gcd_aux: \forall p,m,n,d,c. +O \lt c \to O < n \to n \le m \to n \le p \to +d \divides (c*m) \to d \divides (c*n) \to d \divides c*gcd_aux p m n. +intro. +elim p +[ absurd (O < n) + [ assumption + | apply le_to_not_lt. + assumption + ] +| simplify. + cut (n1 \divides m \lor n1 \ndivides m) + [ elim Hcut + [ rewrite > divides_to_divides_b_true + [ simplify. + assumption + | assumption + | assumption + ] + | rewrite > not_divides_to_divides_b_false + [ simplify. + apply H + [ assumption + | cut (O \lt m \mod n1 \lor O = m \mod n1) + [ elim Hcut1 + [ assumption + | absurd (n1 \divides m) + [ apply mod_O_to_divides + [ assumption + | apply sym_eq. + assumption + ] + | assumption + ] + ] + | apply le_to_or_lt_eq. + apply le_O_n + ] + | apply lt_to_le. + apply lt_mod_m_m. + assumption + | apply le_S_S_to_le. + apply (trans_le ? n1) + [ change with (m \mod n1 < n1). + apply lt_mod_m_m. + assumption + | assumption + ] + | assumption + | rewrite < times_mod + [ rewrite < (sym_times c m). + rewrite < (sym_times c n1). + apply divides_mod + [ rewrite > (S_pred c) + [ rewrite > (S_pred n1) + [ apply (lt_O_times_S_S) + | assumption + ] + | assumption + ] + | assumption + | assumption + ] + | assumption + | assumption + ] + ] + | assumption + | assumption + ] + ] + | apply (decidable_divides n1 m). + assumption + ] +] +qed. + +(*a particular case of the previous theorem (setting c=1)*) +theorem divides_gcd_aux: \forall p,m,n,d. O < n \to n \le m \to n \le p \to +d \divides m \to d \divides n \to d \divides gcd_aux p m n. +intros. +rewrite > (times_n_SO (gcd_aux p m n)). +rewrite < (sym_times (S O)). +apply (divides_times_gcd_aux) +[ apply (lt_O_S O) +| assumption +| assumption +| assumption +| rewrite > (sym_times (S O)). + rewrite < (times_n_SO m). + assumption +| rewrite > (sym_times (S O)). + rewrite < (times_n_SO n). + assumption +] +qed. + +theorem divides_d_times_gcd: \forall m,n,d,c. +O \lt c \to d \divides (c*m) \to d \divides (c*n) \to d \divides c*gcd n m. +intros. +change with +(d \divides c * +match leb n m with + [ true \Rightarrow + match n with + [ O \Rightarrow m + | (S p) \Rightarrow gcd_aux (S p) m (S p) ] + | false \Rightarrow + match m with + [ O \Rightarrow n + | (S p) \Rightarrow gcd_aux (S p) n (S p) ]]). +apply (leb_elim n m) +[ apply (nat_case1 n) + [ simplify. + intros. + assumption + | intros. + change with (d \divides c*gcd_aux (S m1) m (S m1)). + apply divides_times_gcd_aux + [ assumption + | unfold lt. + apply le_S_S. + apply le_O_n + | assumption + | apply (le_n (S m1)) + | assumption + | rewrite < H3. + assumption + ] + ] +| apply (nat_case1 m) + [ simplify. + intros. + assumption + | intros. + change with (d \divides c * gcd_aux (S m1) n (S m1)). + apply divides_times_gcd_aux + [ unfold lt. + change with (O \lt c). + assumption + | apply lt_O_S + | apply lt_to_le. + apply not_le_to_lt. + assumption + | apply (le_n (S m1)). + | assumption + | rewrite < H3. + assumption + ] + ] +] +qed. + +(*a particular case of the previous theorem (setting c=1)*) +theorem divides_d_gcd: \forall m,n,d. +d \divides m \to d \divides n \to d \divides gcd n m. +intros. +rewrite > (times_n_SO (gcd n m)). +rewrite < (sym_times (S O)). +apply (divides_d_times_gcd) +[ apply (lt_O_S O) +| rewrite > (sym_times (S O)). + rewrite < (times_n_SO m). + assumption +| rewrite > (sym_times (S O)). + rewrite < (times_n_SO n). + assumption +] +qed. + +theorem eq_minus_gcd_aux: \forall p,m,n.O < n \to n \le m \to n \le p \to +\exists a,b. a*n - b*m = gcd_aux p m n \lor b*m - a*n = gcd_aux p m n. +intro. +elim p + [absurd (O < n) + [assumption + |apply le_to_not_lt.assumption + ] + |cut (O < m) + [cut (n1 \divides m \lor n1 \ndivides m) + [simplify. + elim Hcut1 + [rewrite > divides_to_divides_b_true + [simplify. + apply (ex_intro ? ? (S O)). + apply (ex_intro ? ? O). + left. + simplify. + rewrite < plus_n_O. + apply sym_eq. + apply minus_n_O + |assumption + |assumption + ] + |rewrite > not_divides_to_divides_b_false + [change with + (\exists a,b.a*n1 - b*m = gcd_aux n n1 (m \mod n1) + \lor b*m - a*n1 = gcd_aux n n1 (m \mod n1)). + cut + (\exists a,b.a*(m \mod n1) - b*n1= gcd_aux n n1 (m \mod n1) + \lor b*n1 - a*(m \mod n1) = gcd_aux n n1 (m \mod n1)) + [elim Hcut2.elim H5.elim H6 + [(* first case *) + rewrite < H7. + apply (ex_intro ? ? (a1+a*(m / n1))). + apply (ex_intro ? ? a). + right. + rewrite < sym_plus. + rewrite < (sym_times n1). + rewrite > distr_times_plus. + rewrite > (sym_times n1). + rewrite > (sym_times n1). + rewrite > (div_mod m n1) in \vdash (? ? (? % ?) ?) + [rewrite > assoc_times. + rewrite < sym_plus. + rewrite > distr_times_plus. + rewrite < eq_minus_minus_minus_plus. + rewrite < sym_plus. + rewrite < plus_minus + [rewrite < minus_n_n.reflexivity + |apply le_n + ] + |assumption + ] + |(* second case *) + rewrite < H7. + apply (ex_intro ? ? (a1+a*(m / n1))). + apply (ex_intro ? ? a). + left. + (* clear Hcut2.clear H5.clear H6.clear H. *) + rewrite > sym_times. + rewrite > distr_times_plus. + rewrite > sym_times. + rewrite > (sym_times n1). + rewrite > (div_mod m n1) in \vdash (? ? (? ? %) ?) + [rewrite > distr_times_plus. + rewrite > assoc_times. + rewrite < eq_minus_minus_minus_plus. + rewrite < sym_plus. + rewrite < plus_minus + [rewrite < minus_n_n.reflexivity + |apply le_n + ] + |assumption + ] + ] + |apply (H n1 (m \mod n1)) + [cut (O \lt m \mod n1 \lor O = m \mod n1) + [elim Hcut2 + [assumption + |absurd (n1 \divides m) + [apply mod_O_to_divides + [assumption + |symmetry.assumption + ] + |assumption + ] + ] + |apply le_to_or_lt_eq. + apply le_O_n + ] + |apply lt_to_le. + apply lt_mod_m_m. + assumption + |apply le_S_S_to_le. + apply (trans_le ? n1) + [change with (m \mod n1 < n1). + apply lt_mod_m_m. + assumption + |assumption + ] + ] + ] + |assumption + |assumption + ] + ] + |apply (decidable_divides n1 m). + assumption + ] + |apply (lt_to_le_to_lt ? n1);assumption + ] + ] +qed. + +theorem eq_minus_gcd: + \forall m,n.\exists a,b.a*n - b*m = (gcd n m) \lor b*m - a*n = (gcd n m). +intros. +unfold gcd. +apply (leb_elim n m). +apply (nat_case1 n). +simplify.intros. +apply (ex_intro ? ? O). +apply (ex_intro ? ? (S O)). +right.simplify. +rewrite < plus_n_O. +apply sym_eq.apply minus_n_O. +intros. +change with +(\exists a,b. +a*(S m1) - b*m = (gcd_aux (S m1) m (S m1)) +\lor b*m - a*(S m1) = (gcd_aux (S m1) m (S m1))). +apply eq_minus_gcd_aux. +unfold lt. apply le_S_S.apply le_O_n. +assumption.apply le_n. +apply (nat_case1 m). +simplify.intros. +apply (ex_intro ? ? (S O)). +apply (ex_intro ? ? O). +left.simplify. +rewrite < plus_n_O. +apply sym_eq.apply minus_n_O. +intros. +change with +(\exists a,b. +a*n - b*(S m1) = (gcd_aux (S m1) n (S m1)) +\lor b*(S m1) - a*n = (gcd_aux (S m1) n (S m1))). +cut +(\exists a,b. +a*(S m1) - b*n = (gcd_aux (S m1) n (S m1)) +\lor +b*n - a*(S m1) = (gcd_aux (S m1) n (S m1))). +elim Hcut.elim H2.elim H3. +apply (ex_intro ? ? a1). +apply (ex_intro ? ? a). +right.assumption. +apply (ex_intro ? ? a1). +apply (ex_intro ? ? a). +left.assumption. +apply eq_minus_gcd_aux. +unfold lt. apply le_S_S.apply le_O_n. +apply lt_to_le.apply not_le_to_lt.assumption. +apply le_n. +qed. + +(* some properties of gcd *) + +theorem gcd_O_n: \forall n:nat. gcd O n = n. +intro.simplify.reflexivity. +qed. + +theorem gcd_O_to_eq_O:\forall m,n:nat. (gcd m n) = O \to +m = O \land n = O. +intros.cut (O \divides n \land O \divides m). +elim Hcut.elim H2.split. +assumption.elim H1.assumption. +rewrite < H. +apply divides_gcd_nm. +qed. + +theorem lt_O_gcd:\forall m,n:nat. O < n \to O < gcd m n. +intros. +apply (nat_case1 (gcd m n)). +intros. +generalize in match (gcd_O_to_eq_O m n H1). +intros.elim H2. +rewrite < H4 in \vdash (? ? %).assumption. +intros.unfold lt.apply le_S_S.apply le_O_n. +qed. + +theorem gcd_n_n: \forall n.gcd n n = n. +intro.elim n + [reflexivity + |apply le_to_le_to_eq + [apply divides_to_le + [apply lt_O_S + |apply divides_gcd_n + ] + |apply divides_to_le + [apply lt_O_gcd.apply lt_O_S + |apply divides_d_gcd + [apply divides_n_n|apply divides_n_n] + ] + ] + ] +qed. + +theorem gcd_SO_to_lt_O: \forall i,n. (S O) < n \to gcd i n = (S O) \to +O < i. +intros. +elim (le_to_or_lt_eq ? ? (le_O_n i)) + [assumption + |absurd ((gcd i n) = (S O)) + [assumption + |rewrite < H2. + simplify. + unfold.intro. + apply (lt_to_not_eq (S O) n H). + apply sym_eq.assumption + ] + ] +qed. + +theorem gcd_SO_to_lt_n: \forall i,n. (S O) < n \to i \le n \to gcd i n = (S O) \to +i < n. +intros. +elim (le_to_or_lt_eq ? ? H1) + [assumption + |absurd ((gcd i n) = (S O)) + [assumption + |rewrite > H3. + rewrite > gcd_n_n. + unfold.intro. + apply (lt_to_not_eq (S O) n H). + apply sym_eq.assumption + ] + ] +qed. + +theorem gcd_n_times_nm: \forall n,m. O < m \to gcd n (n*m) = n. +intro.apply (nat_case n) + [intros.reflexivity + |intros. + apply le_to_le_to_eq + [apply divides_to_le + [apply lt_O_S|apply divides_gcd_n] + |apply divides_to_le + [apply lt_O_gcd.rewrite > (times_n_O O). + apply lt_times[apply lt_O_S|assumption] + |apply divides_d_gcd + [apply (witness ? ? m1).reflexivity + |apply divides_n_n + ] + ] + ] + ] +qed. + +theorem symmetric_gcd: symmetric nat gcd. +change with +(\forall n,m:nat. gcd n m = gcd m n). +intros. +cut (O < (gcd n m) \lor O = (gcd n m)). +elim Hcut. +cut (O < (gcd m n) \lor O = (gcd m n)). +elim Hcut1. +apply antisym_le. +apply divides_to_le.assumption. +apply divides_d_gcd.apply divides_gcd_n.apply divides_gcd_m. +apply divides_to_le.assumption. +apply divides_d_gcd.apply divides_gcd_n.apply divides_gcd_m. +rewrite < H1. +cut (m=O \land n=O). +elim Hcut2.rewrite > H2.rewrite > H3.reflexivity. +apply gcd_O_to_eq_O.apply sym_eq.assumption. +apply le_to_or_lt_eq.apply le_O_n. +rewrite < H. +cut (n=O \land m=O). +elim Hcut1.rewrite > H1.rewrite > H2.reflexivity. +apply gcd_O_to_eq_O.apply sym_eq.assumption. +apply le_to_or_lt_eq.apply le_O_n. +qed. + +variant sym_gcd: \forall n,m:nat. gcd n m = gcd m n \def +symmetric_gcd. + +theorem le_gcd_times: \forall m,n,p:nat. O< p \to gcd m n \le gcd m (n*p). +intros. +apply (nat_case n).apply le_n. +intro. +apply divides_to_le. +apply lt_O_gcd. +rewrite > (times_n_O O). +apply lt_times.unfold lt.apply le_S_S.apply le_O_n.assumption. +apply divides_d_gcd. +apply (transitive_divides ? (S m1)). +apply divides_gcd_m. +apply (witness ? ? p).reflexivity. +apply divides_gcd_n. +qed. + +theorem gcd_times_SO_to_gcd_SO: \forall m,n,p:nat. O < n \to O < p \to +gcd m (n*p) = (S O) \to gcd m n = (S O). +intros. +apply antisymmetric_le. +rewrite < H2. +apply le_gcd_times.assumption. +change with (O < gcd m n). +apply lt_O_gcd.assumption. +qed. + +(* for the "converse" of the previous result see the end of this development *) + +theorem eq_gcd_SO_to_not_divides: \forall n,m. (S O) < n \to +(gcd n m) = (S O) \to \lnot (divides n m). +intros.unfold.intro. +elim H2. +generalize in match H1. +rewrite > H3. +intro. +cut (O < n2) + [elim (gcd_times_SO_to_gcd_SO n n n2 ? ? H4) + [cut (gcd n (n*n2) = n) + [apply (lt_to_not_eq (S O) n) + [assumption|rewrite < H4.assumption] + |apply gcd_n_times_nm.assumption + ] + |apply (trans_lt ? (S O))[apply le_n|assumption] + |assumption + ] + |elim (le_to_or_lt_eq O n2 (le_O_n n2)); + [assumption + |apply False_ind. + apply (le_to_not_lt n (S O)) + [rewrite < H4. + apply divides_to_le + [rewrite > H4.apply lt_O_S + |apply divides_d_gcd + [apply (witness ? ? n2).reflexivity + |apply divides_n_n + ] + ] + |assumption + ] + ] + ] +qed. + +theorem gcd_SO_n: \forall n:nat. gcd (S O) n = (S O). +intro. +apply antisym_le.apply divides_to_le.unfold lt.apply le_n. +apply divides_gcd_n. +cut (O < gcd (S O) n \lor O = gcd (S O) n). +elim Hcut.assumption. +apply False_ind. +apply (not_eq_O_S O). +cut ((S O)=O \land n=O). +elim Hcut1.apply sym_eq.assumption. +apply gcd_O_to_eq_O.apply sym_eq.assumption. +apply le_to_or_lt_eq.apply le_O_n. +qed. + +theorem divides_gcd_mod: \forall m,n:nat. O < n \to +divides (gcd m n) (gcd n (m \mod n)). +intros. +apply divides_d_gcd. +apply divides_mod.assumption. +apply divides_gcd_n. +apply divides_gcd_m. +apply divides_gcd_m. +qed. + +theorem divides_mod_gcd: \forall m,n:nat. O < n \to +divides (gcd n (m \mod n)) (gcd m n) . +intros. +apply divides_d_gcd. +apply divides_gcd_n. +apply (divides_mod_to_divides ? ? n). +assumption. +apply divides_gcd_m. +apply divides_gcd_n. +qed. + +theorem gcd_mod: \forall m,n:nat. O < n \to +(gcd n (m \mod n)) = (gcd m n) . +intros. +apply antisymmetric_divides. +apply divides_mod_gcd.assumption. +apply divides_gcd_mod.assumption. +qed. + +(* gcd and primes *) + +theorem prime_to_gcd_SO: \forall n,m:nat. prime n \to n \ndivides m \to +gcd n m = (S O). +intros.unfold prime in H. +elim H. +apply antisym_le. +apply not_lt_to_le.unfold Not.unfold lt. +intro. +apply H1.rewrite < (H3 (gcd n m)). +apply divides_gcd_m. +apply divides_gcd_n.assumption. +cut (O < gcd n m \lor O = gcd n m). +elim Hcut.assumption. +apply False_ind. +apply (not_le_Sn_O (S O)). +cut (n=O \land m=O). +elim Hcut1.rewrite < H5 in \vdash (? ? %).assumption. +apply gcd_O_to_eq_O.apply sym_eq.assumption. +apply le_to_or_lt_eq.apply le_O_n. +qed. + +(* primes and divides *) +theorem divides_times_to_divides: \forall n,p,q:nat.prime n \to n \divides p*q \to +n \divides p \lor n \divides q. +intros. +cut (n \divides p \lor n \ndivides p) + [elim Hcut + [left.assumption + |right. + cut (\exists a,b. a*n - b*p = (S O) \lor b*p - a*n = (S O)) + [elim Hcut1.elim H3.elim H4 + [(* first case *) + rewrite > (times_n_SO q).rewrite < H5. + rewrite > distr_times_minus. + rewrite > (sym_times q (a1*p)). + rewrite > (assoc_times a1). + elim H1. + (* + rewrite > H6. + applyS (witness n (n*(q*a-a1*n2)) (q*a-a1*n2)) + reflexivity. *); + applyS (witness n ? ? (refl_eq ? ?)) (* timeout=50 *). + (* + rewrite < (sym_times n).rewrite < assoc_times. + rewrite > (sym_times q).rewrite > assoc_times. + rewrite < (assoc_times a1).rewrite < (sym_times n). + rewrite > (assoc_times n). + rewrite < distr_times_minus. + apply (witness ? ? (q*a-a1*n2)).reflexivity + *) + |(* second case *) + rewrite > (times_n_SO q).rewrite < H5. + rewrite > distr_times_minus. + rewrite > (sym_times q (a1*p)). + rewrite > (assoc_times a1). + elim H1.rewrite > H6. + rewrite < sym_times.rewrite > assoc_times. + rewrite < (assoc_times q). + rewrite < (sym_times n). + rewrite < distr_times_minus. + apply (witness ? ? (n2*a1-q*a)).reflexivity + ](* end second case *) + |rewrite < (prime_to_gcd_SO n p) + [apply eq_minus_gcd|assumption|assumption + ] + ] + ] + |apply (decidable_divides n p). + apply (trans_lt ? (S O)) + [unfold lt.apply le_n + |unfold prime in H.elim H. assumption + ] + ] +qed. + +theorem divides_exp_to_divides: +\forall p,n,m:nat. prime p \to +p \divides n \sup m \to p \divides n. +intros 3.elim m.simplify in H1. +apply (transitive_divides p (S O)).assumption. +apply divides_SO_n. +cut (p \divides n \lor p \divides n \sup n1). +elim Hcut.assumption. +apply H.assumption.assumption. +apply divides_times_to_divides.assumption. +exact H2. +qed. + +theorem divides_exp_to_eq: +\forall p,q,m:nat. prime p \to prime q \to +p \divides q \sup m \to p = q. +intros. +unfold prime in H1. +elim H1.apply H4. +apply (divides_exp_to_divides p q m). +assumption.assumption. +unfold prime in H.elim H.assumption. +qed. + +theorem eq_gcd_times_SO: \forall m,n,p:nat. O < n \to O < p \to +gcd m n = (S O) \to gcd m p = (S O) \to gcd m (n*p) = (S O). +intros. +apply antisymmetric_le. +apply not_lt_to_le. +unfold Not.intro. +cut (divides (smallest_factor (gcd m (n*p))) n \lor + divides (smallest_factor (gcd m (n*p))) p). +elim Hcut. +apply (not_le_Sn_n (S O)). +change with ((S O) < (S O)). +rewrite < H2 in \vdash (? ? %). +apply (lt_to_le_to_lt ? (smallest_factor (gcd m (n*p)))). +apply lt_SO_smallest_factor.assumption. +apply divides_to_le. +rewrite > H2.unfold lt.apply le_n. +apply divides_d_gcd.assumption. +apply (transitive_divides ? (gcd m (n*p))). +apply divides_smallest_factor_n. +apply (trans_lt ? (S O)). unfold lt. apply le_n. assumption. +apply divides_gcd_n. +apply (not_le_Sn_n (S O)). +change with ((S O) < (S O)). +rewrite < H3 in \vdash (? ? %). +apply (lt_to_le_to_lt ? (smallest_factor (gcd m (n*p)))). +apply lt_SO_smallest_factor.assumption. +apply divides_to_le. +rewrite > H3.unfold lt.apply le_n. +apply divides_d_gcd.assumption. +apply (transitive_divides ? (gcd m (n*p))). +apply divides_smallest_factor_n. +apply (trans_lt ? (S O)). unfold lt. apply le_n. assumption. +apply divides_gcd_n. +apply divides_times_to_divides. +apply prime_smallest_factor_n. +assumption. +apply (transitive_divides ? (gcd m (n*p))). +apply divides_smallest_factor_n. +apply (trans_lt ? (S O)).unfold lt. apply le_n. assumption. +apply divides_gcd_m. +change with (O < gcd m (n*p)). +apply lt_O_gcd. +rewrite > (times_n_O O). +apply lt_times.assumption.assumption. +qed. + +theorem gcd_SO_to_divides_times_to_divides: \forall m,n,p:nat. O < n \to +gcd n m = (S O) \to n \divides (m*p) \to n \divides p. +intros. +cut (n \divides p \lor n \ndivides p) + [elim Hcut + [assumption + |cut (\exists a,b. a*n - b*m = (S O) \lor b*m - a*n = (S O)) + [elim Hcut1.elim H4.elim H5 + [(* first case *) + rewrite > (times_n_SO p).rewrite < H6. + rewrite > distr_times_minus. + rewrite > (sym_times p (a1*m)). + rewrite > (assoc_times a1). + elim H2. + applyS (witness n ? ? (refl_eq ? ?)) (* timeout=50 *). + |(* second case *) + rewrite > (times_n_SO p).rewrite < H6. + rewrite > distr_times_minus. + rewrite > (sym_times p (a1*m)). + rewrite > (assoc_times a1). + elim H2. + applyS (witness n ? ? (refl_eq ? ?)). + ](* end second case *) + |rewrite < H1.apply eq_minus_gcd. + ] + ] + |apply (decidable_divides n p). + assumption. + ] +qed. + +(* +theorem divides_to_divides_times1: \forall p,q,n. prime p \to prime q \to p \neq q \to +divides p n \to divides q n \to divides (p*q) n. +intros.elim H3. +rewrite > H5 in H4. +elim (divides_times_to_divides ? ? ? H1 H4) + [elim H.apply False_ind. + apply H2.apply sym_eq.apply H8 + [assumption + |apply prime_to_lt_SO.assumption + ] + |elim H6. + apply (witness ? ? n1). + rewrite > assoc_times. + rewrite < H7.assumption + ] +qed. +*) + +theorem divides_to_divides_times: \forall p,q,n. prime p \to p \ndivides q \to +divides p n \to divides q n \to divides (p*q) n. +intros.elim H3. +rewrite > H4 in H2. +elim (divides_times_to_divides ? ? ? H H2) + [apply False_ind.apply H1.assumption + |elim H5. + apply (witness ? ? n1). + rewrite > sym_times in ⊢ (? ? ? (? % ?)). + rewrite > assoc_times. + rewrite < H6.assumption + ] +qed. \ No newline at end of file