X-Git-Url: http://matita.cs.unibo.it/gitweb/?p=helm.git;a=blobdiff_plain;f=matita%2Flibrary%2Fnat%2Fiteration2.ma;fp=matita%2Flibrary%2Fnat%2Fiteration2.ma;h=752e89b9d02fec375326cd8d8df46b577daaef93;hp=0000000000000000000000000000000000000000;hb=f61af501fb4608cc4fb062a0864c774e677f0d76;hpb=58ae1809c352e71e7b5530dc41e2bfc834e1aef1 diff --git a/matita/library/nat/iteration2.ma b/matita/library/nat/iteration2.ma new file mode 100644 index 000000000..752e89b9d --- /dev/null +++ b/matita/library/nat/iteration2.ma @@ -0,0 +1,980 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| A.Asperti, C.Sacerdoti Coen, *) +(* ||A|| E.Tassi, S.Zacchiroli *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU Lesser General Public License Version 2.1 *) +(* *) +(**************************************************************************) + +include "nat/primes.ma". +include "nat/ord.ma". +include "nat/generic_iter_p.ma". +include "nat/count.ma".(*necessary just to use bool_to_nat and bool_to_nat_andb*) + +(* sigma_p on nautral numbers is a specialization of sigma_p_gen *) +definition sigma_p: nat \to (nat \to bool) \to (nat \to nat) \to nat \def +\lambda n, p, g. (iter_p_gen n p nat g O plus). + +theorem symmetricIntPlus: symmetric nat plus. +change with (\forall a,b:nat. (plus a b) = (plus b a)). +intros. +rewrite > sym_plus. +reflexivity. +qed. + +(*the following theorems on sigma_p in N are obtained by the more general ones + * in sigma_p_gen.ma + *) +theorem true_to_sigma_p_Sn: +\forall n:nat. \forall p:nat \to bool. \forall g:nat \to nat. +p n = true \to sigma_p (S n) p g = +(g n)+(sigma_p n p g). +intros. +unfold sigma_p. +apply true_to_iter_p_gen_Sn. +assumption. +qed. + +theorem false_to_sigma_p_Sn: +\forall n:nat. \forall p:nat \to bool. \forall g:nat \to nat. +p n = false \to sigma_p (S n) p g = sigma_p n p g. +intros. +unfold sigma_p. +apply false_to_iter_p_gen_Sn. +assumption. +qed. + +theorem eq_sigma_p: \forall p1,p2:nat \to bool. +\forall g1,g2: nat \to nat.\forall n. +(\forall x. x < n \to p1 x = p2 x) \to +(\forall x. x < n \to g1 x = g2 x) \to +sigma_p n p1 g1 = sigma_p n p2 g2. +intros. +unfold sigma_p. +apply eq_iter_p_gen; + assumption. +qed. + +theorem eq_sigma_p1: \forall p1,p2:nat \to bool. +\forall g1,g2: nat \to nat.\forall n. +(\forall x. x < n \to p1 x = p2 x) \to +(\forall x. x < n \to p1 x = true \to g1 x = g2 x) \to +sigma_p n p1 g1 = sigma_p n p2 g2. +intros. +unfold sigma_p. +apply eq_iter_p_gen1; + assumption. +qed. + +theorem sigma_p_false: +\forall g: nat \to nat.\forall n.sigma_p n (\lambda x.false) g = O. +intros. +unfold sigma_p. +apply iter_p_gen_false. +qed. + +theorem sigma_p_plus: \forall n,k:nat.\forall p:nat \to bool. +\forall g: nat \to nat. +sigma_p (k+n) p g += sigma_p k (\lambda x.p (x+n)) (\lambda x.g (x+n)) + sigma_p n p g. +intros. +unfold sigma_p. +apply (iter_p_gen_plusA nat n k p g O plus) +[ apply symmetricIntPlus. +| intros. + apply sym_eq. + apply plus_n_O +| apply associative_plus +] +qed. + +theorem false_to_eq_sigma_p: \forall n,m:nat.n \le m \to +\forall p:nat \to bool. +\forall g: nat \to nat. (\forall i:nat. n \le i \to i < m \to +p i = false) \to sigma_p m p g = sigma_p n p g. +intros. +unfold sigma_p. +apply (false_to_eq_iter_p_gen); + assumption. +qed. + +theorem or_false_to_eq_sigma_p: +\forall n,m:nat.\forall p:nat \to bool. +\forall g: nat \to nat. +n \le m \to (\forall i:nat. n \le i \to i < m \to p i = false \lor g i = O) +\to sigma_p m p g = sigma_p n p g. +intros. +unfold sigma_p. +apply or_false_eq_baseA_to_eq_iter_p_gen + [intros.reflexivity + |assumption + |assumption + ] +qed. + +theorem bool_to_nat_to_eq_sigma_p: +\forall n:nat.\forall p1,p2:nat \to bool. +\forall g1,g2: nat \to nat. +(\forall i:nat. +bool_to_nat (p1 i)*(g1 i) = bool_to_nat (p2 i)*(g2 i)) +\to sigma_p n p1 g1 = sigma_p n p2 g2. +intros.elim n + [reflexivity + |generalize in match (H n1). + apply (bool_elim ? (p1 n1));intro + [apply (bool_elim ? (p2 n1));intros + [rewrite > true_to_sigma_p_Sn + [rewrite > true_to_sigma_p_Sn + [apply eq_f2 + [simplify in H4. + rewrite > plus_n_O. + rewrite > plus_n_O in ⊢ (? ? ? %). + assumption + |assumption + ] + |assumption + ] + |assumption + ] + |rewrite > true_to_sigma_p_Sn + [rewrite > false_to_sigma_p_Sn + [change in ⊢ (? ? ? %) with (O + sigma_p n1 p2 g2). + apply eq_f2 + [simplify in H4. + rewrite > plus_n_O. + assumption + |assumption + ] + |assumption + ] + |assumption + ] + ] + |apply (bool_elim ? (p2 n1));intros + [rewrite > false_to_sigma_p_Sn + [rewrite > true_to_sigma_p_Sn + [change in ⊢ (? ? % ?) with (O + sigma_p n1 p1 g1). + apply eq_f2 + [simplify in H4. + rewrite < plus_n_O in H4. + assumption + |assumption + ] + |assumption + ] + |assumption + ] + |rewrite > false_to_sigma_p_Sn + [rewrite > false_to_sigma_p_Sn + [assumption + |assumption + ] + |assumption + ] + ] + ] + ] +qed. + +theorem sigma_p2 : +\forall n,m:nat. +\forall p1,p2:nat \to bool. +\forall g: nat \to nat \to nat. +sigma_p (n*m) + (\lambda x.andb (p1 (div x m)) (p2 (mod x m))) + (\lambda x.g (div x m) (mod x m)) = +sigma_p n p1 + (\lambda x.sigma_p m p2 (g x)). +intros. +unfold sigma_p. +apply (iter_p_gen2 n m p1 p2 nat g O plus) +[ apply symmetricIntPlus +| apply associative_plus +| intros. + apply sym_eq. + apply plus_n_O +] +qed. + +theorem sigma_p2' : +\forall n,m:nat. +\forall p1:nat \to bool. +\forall p2:nat \to nat \to bool. +\forall g: nat \to nat \to nat. +sigma_p (n*m) + (\lambda x.andb (p1 (div x m)) (p2 (div x m) (mod x m))) + (\lambda x.g (div x m) (mod x m)) = +sigma_p n p1 + (\lambda x.sigma_p m (p2 x) (g x)). +intros. +unfold sigma_p. +apply (iter_p_gen2' n m p1 p2 nat g O plus) +[ apply symmetricIntPlus +| apply associative_plus +| intros. + apply sym_eq. + apply plus_n_O +] +qed. + +lemma sigma_p_gi: \forall g: nat \to nat. +\forall n,i.\forall p:nat \to bool.i < n \to p i = true \to +sigma_p n p g = g i + sigma_p n (\lambda x. andb (p x) (notb (eqb x i))) g. +intros. +unfold sigma_p. +apply (iter_p_gen_gi) +[ apply symmetricIntPlus +| apply associative_plus +| intros. + apply sym_eq. + apply plus_n_O +| assumption +| assumption +] +qed. + +theorem eq_sigma_p_gh: +\forall g,h,h1: nat \to nat.\forall n,n1. +\forall p1,p2:nat \to bool. +(\forall i. i < n \to p1 i = true \to p2 (h i) = true) \to +(\forall i. i < n \to p1 i = true \to h1 (h i) = i) \to +(\forall i. i < n \to p1 i = true \to h i < n1) \to +(\forall j. j < n1 \to p2 j = true \to p1 (h1 j) = true) \to +(\forall j. j < n1 \to p2 j = true \to h (h1 j) = j) \to +(\forall j. j < n1 \to p2 j = true \to h1 j < n) \to +sigma_p n p1 (\lambda x.g(h x)) = sigma_p n1 p2 g. +intros. +unfold sigma_p. +apply (eq_iter_p_gen_gh nat O plus ? ? ? g h h1 n n1 p1 p2) +[ apply symmetricIntPlus +| apply associative_plus +| intros. + apply sym_eq. + apply plus_n_O +| assumption +| assumption +| assumption +| assumption +| assumption +| assumption +] +qed. + +theorem eq_sigma_p_pred: +\forall n,p,g. p O = true \to +sigma_p (S n) (\lambda i.p (pred i)) (\lambda i.g(pred i)) = +plus (sigma_p n p g) (g O). +intros. +unfold sigma_p. +apply eq_iter_p_gen_pred + [assumption + |apply symmetricIntPlus + |apply associative_plus + |intros.apply sym_eq.apply plus_n_O + ] +qed. + +(* monotonicity *) +theorem le_sigma_p: +\forall n:nat. \forall p:nat \to bool. \forall g1,g2:nat \to nat. +(\forall i. i < n \to p i = true \to g1 i \le g2 i ) \to +sigma_p n p g1 \le sigma_p n p g2. +intros. +generalize in match H. +elim n + [apply le_n. + |apply (bool_elim ? (p n1));intros + [rewrite > true_to_sigma_p_Sn + [rewrite > true_to_sigma_p_Sn in ⊢ (? ? %) + [apply le_plus + [apply H2[apply le_n|assumption] + |apply H1. + intros. + apply H2[apply le_S.assumption|assumption] + ] + |assumption + ] + |assumption + ] + |rewrite > false_to_sigma_p_Sn + [rewrite > false_to_sigma_p_Sn in ⊢ (? ? %) + [apply H1. + intros. + apply H2[apply le_S.assumption|assumption] + |assumption + ] + |assumption + ] + ] + ] +qed. + +(* a slightly more general result *) +theorem le_sigma_p1: +\forall n:nat. \forall p1,p2:nat \to bool. \forall g1,g2:nat \to nat. +(\forall i. i < n \to +bool_to_nat (p1 i)*(g1 i) \le bool_to_nat (p2 i)*g2 i) \to +sigma_p n p1 g1 \le sigma_p n p2 g2. +intros. +generalize in match H. +elim n + [apply le_n. + |apply (bool_elim ? (p1 n1));intros + [apply (bool_elim ? (p2 n1));intros + [rewrite > true_to_sigma_p_Sn + [rewrite > true_to_sigma_p_Sn in ⊢ (? ? %) + [apply le_plus + [lapply (H2 n1) as H5 + [rewrite > H3 in H5. + rewrite > H4 in H5. + simplify in H5. + rewrite < plus_n_O in H5. + rewrite < plus_n_O in H5. + assumption + |apply le_S_S.apply le_n + ] + |apply H1.intros. + apply H2.apply le_S.assumption + ] + |assumption + ] + |assumption + ] + |rewrite > true_to_sigma_p_Sn + [rewrite > false_to_sigma_p_Sn in ⊢ (? ? %) + [change in ⊢ (? ? %) with (O + sigma_p n1 p2 g2). + apply le_plus + [lapply (H2 n1) as H5 + [rewrite > H3 in H5. + rewrite > H4 in H5. + simplify in H5. + rewrite < plus_n_O in H5. + assumption + |apply le_S_S.apply le_n + ] + |apply H1.intros. + apply H2.apply le_S.assumption + ] + |assumption + ] + |assumption + ] + ] + |apply (bool_elim ? (p2 n1));intros + [rewrite > false_to_sigma_p_Sn + [rewrite > true_to_sigma_p_Sn in ⊢ (? ? %) + [change in ⊢ (? % ?) with (O + sigma_p n1 p1 g1). + apply le_plus + [lapply (H2 n1) as H5 + [rewrite > H3 in H5. + rewrite > H4 in H5. + simplify in H5. + rewrite < plus_n_O in H5. + assumption + |apply le_S_S.apply le_n + ] + |apply H1.intros. + apply H2.apply le_S.assumption + ] + |assumption + ] + |assumption + ] + |rewrite > false_to_sigma_p_Sn + [rewrite > false_to_sigma_p_Sn in ⊢ (? ? %) + [apply H1.intros. + apply H2.apply le_S.assumption + |assumption + ] + |assumption + ] + ] + ] + ] +qed. + +theorem lt_sigma_p: +\forall n:nat. \forall p:nat \to bool. \forall g1,g2:nat \to nat. +(\forall i. i < n \to p i = true \to g1 i \le g2 i ) \to +(\exists i. i < n \and (p i = true) \and (g1 i < g2 i)) \to +sigma_p n p g1 < sigma_p n p g2. +intros 4. +elim n + [elim H1.clear H1. + elim H2.clear H2. + elim H1.clear H1. + apply False_ind. + apply (lt_to_not_le ? ? H2). + apply le_O_n + |apply (bool_elim ? (p n1));intros + [apply (bool_elim ? (leb (S (g1 n1)) (g2 n1)));intros + [rewrite > true_to_sigma_p_Sn + [rewrite > true_to_sigma_p_Sn in ⊢ (? ? %) + [change with + (S (g1 n1)+sigma_p n1 p g1 \le g2 n1+sigma_p n1 p g2). + apply le_plus + [apply leb_true_to_le.assumption + |apply le_sigma_p.intros. + apply H1 + [apply lt_to_le.apply le_S_S.assumption + |assumption + ] + ] + |assumption + ] + |assumption + ] + |rewrite > true_to_sigma_p_Sn + [rewrite > true_to_sigma_p_Sn in ⊢ (? ? %) + [unfold lt. + rewrite > plus_n_Sm. + apply le_plus + [apply H1 + [apply le_n + |assumption + ] + |apply H + [intros.apply H1 + [apply lt_to_le.apply le_S_S.assumption + |assumption + ] + |elim H2.clear H2. + elim H5.clear H5. + elim H2.clear H2. + apply (ex_intro ? ? a). + split + [split + [elim (le_to_or_lt_eq a n1) + [assumption + |absurd (g1 a < g2 a) + [assumption + |apply leb_false_to_not_le. + rewrite > H2. + assumption + ] + |apply le_S_S_to_le. + assumption + ] + |assumption + ] + |assumption + ] + ] + ] + |assumption + ] + |assumption + ] + ] + |rewrite > false_to_sigma_p_Sn + [rewrite > false_to_sigma_p_Sn in ⊢ (? ? %) + [apply H + [intros.apply H1 + [apply lt_to_le.apply le_S_S.assumption + |assumption + ] + |elim H2.clear H2. + elim H4.clear H4. + elim H2.clear H2. + apply (ex_intro ? ? a). + split + [split + [elim (le_to_or_lt_eq a n1) + [assumption + |apply False_ind. + apply not_eq_true_false. + rewrite < H6. + rewrite < H3. + rewrite < H2. + reflexivity + |apply le_S_S_to_le. + assumption + ] + |assumption + ] + |assumption + ] + ] + |assumption + ] + |assumption + ] + ] + ] +qed. + +theorem sigma_p_divides: +\forall n,m,p:nat.O < n \to prime p \to Not (divides p n) \to +\forall g: nat \to nat. +sigma_p (S (n*(exp p m))) (\lambda x.divides_b x (n*(exp p m))) g = +sigma_p (S n) (\lambda x.divides_b x n) + (\lambda x.sigma_p (S m) (\lambda y.true) (\lambda y.g (x*(exp p y)))). +intros. +unfold sigma_p. +apply (iter_p_gen_divides nat O plus n m p ? ? ? g) +[ assumption +| assumption +| assumption +| apply symmetricIntPlus +| apply associative_plus +| intros. + apply sym_eq. + apply plus_n_O +] +qed. + +theorem distributive_times_plus_sigma_p: \forall n,k:nat. \forall p:nat \to bool. \forall g:nat \to nat. +k*(sigma_p n p g) = sigma_p n p (\lambda i:nat.k * (g i)). +intros. +apply (distributive_times_plus_iter_p_gen nat plus O times n k p g) +[ apply symmetricIntPlus +| apply associative_plus +| intros. + apply sym_eq. + apply plus_n_O +| apply symmetric_times +| apply distributive_times_plus +| intros. + rewrite < (times_n_O a). + reflexivity +] +qed. + +(*some properties of sigma_p invoked with an "always true" predicate (in this + way sigma_p just counts the elements, without doing any control) or with + the nat \to nat function which always returns (S O). + It 's not easily possible proving these theorems in a general form + in generic_sigma_p.ma + *) + +theorem sigma_p_true: \forall n:nat. +(sigma_p n (\lambda x.true) (\lambda x.S O)) = n. +intros. +elim n +[ simplify. + reflexivity +| rewrite > (true_to_sigma_p_Sn n1 (\lambda x:nat.true) (\lambda x:nat.S O)) + [ rewrite > H. + simplify. + reflexivity + | reflexivity + ] +] +qed. + +theorem sigma_P_SO_to_sigma_p_true: \forall n:nat. \forall g:nat \to bool. +sigma_p n g (\lambda n:nat. (S O)) = +sigma_p n (\lambda x:nat.true) (\lambda i:nat.bool_to_nat (g i)). +intros. +elim n +[ simplify. + reflexivity +| cut ((g n1) = true \lor (g n1) = false) + [ rewrite > true_to_sigma_p_Sn in \vdash (? ? ? %) + [ elim Hcut + [ rewrite > H1. + rewrite > true_to_sigma_p_Sn in \vdash (? ? % ?) + [ simplify. + apply eq_f. + assumption + | assumption + ] + | rewrite > H1. + rewrite > false_to_sigma_p_Sn in \vdash (? ? % ?) + [ simplify. + assumption + | assumption + ] + ] + | reflexivity + ] + | elim (g n1) + [ left. + reflexivity + | right. + reflexivity + ] + ] +] +qed. + +(* I introduce an equivalence in the form map_iter_i in order to use + * the existing result about permutation in that part of the library. + *) + +theorem eq_map_iter_i_sigma_p_alwaysTrue: \forall n:nat.\forall g:nat \to nat. +map_iter_i n g plus O = sigma_p (S n) (\lambda c:nat.true) g. +intros. +elim n +[ simplify. + rewrite < plus_n_O. + reflexivity +| rewrite > true_to_sigma_p_Sn + [ simplify in \vdash (? ? % ?). + rewrite < plus_n_O. + apply eq_f. + assumption + | reflexivity + ] +] +qed. + +theorem sigma_p_plus_1: \forall n:nat. \forall f,g:nat \to nat. +\forall p. +sigma_p n p (\lambda a:nat.(f a) + (g a)) = +sigma_p n p f + sigma_p n p g. +intros. +elim n +[ simplify. + reflexivity +| apply (bool_elim ? (p n1)); intro; + [ rewrite > true_to_sigma_p_Sn + [ rewrite > (true_to_sigma_p_Sn n1 p f) + [ rewrite > (true_to_sigma_p_Sn n1 p g) + [ rewrite > assoc_plus in \vdash (? ? ? %). + rewrite < assoc_plus in \vdash (? ? ? (? ? %)). + rewrite < sym_plus in \vdash (? ? ? (? ? (? % ?))). + rewrite > assoc_plus in \vdash (? ? ? (? ? %)). + rewrite < assoc_plus in \vdash (? ? ? %). + apply eq_f. + assumption]]] + assumption + | rewrite > false_to_sigma_p_Sn + [ rewrite > (false_to_sigma_p_Sn n1 p f) + [ rewrite > (false_to_sigma_p_Sn n1 p g) + [assumption]]] + assumption +]] +qed. + +theorem eq_sigma_p_sigma_p_times1 : \forall n,m:nat.\forall f:nat \to nat. +sigma_p (n*m) (\lambda x:nat.true) f = +sigma_p m (\lambda x:nat.true) + (\lambda a.(sigma_p n (\lambda x:nat.true) (\lambda b.f (b*m + a)))). +intro. +elim n +[ simplify. + elim m + [ simplify. + reflexivity + | rewrite > true_to_sigma_p_Sn + [ rewrite < H. + reflexivity + | reflexivity + ] + ] +| change in \vdash (? ? ? (? ? ? (\lambda a:?.%))) with ((f ((n1*m)+a)) + + (sigma_p n1 (\lambda x:nat.true) (\lambda b:nat.f (b*m +a)))). + rewrite > sigma_p_plus_1 in \vdash (? ? ? %). + rewrite > (sym_times (S n1) m). + rewrite < (times_n_Sm m n1). + rewrite > sigma_p_plus in \vdash (? ? % ?). + apply eq_f2 + [ rewrite < (sym_times m n1). + apply eq_sigma_p + [ intros. + reflexivity + | intros. + rewrite < (sym_plus ? (m * n1)). + reflexivity + ] + | rewrite > (sym_times m n1). + apply H + ] +] +qed. + +theorem eq_sigma_p_sigma_p_times2 : \forall n,m:nat.\forall f:nat \to nat. +sigma_p (n *m) (\lambda c:nat.true) f = +sigma_p n (\lambda c:nat.true) + (\lambda a.(sigma_p m (\lambda c:nat.true) (\lambda b:nat.f (b* n + a)))). +intros. +rewrite > sym_times. +apply eq_sigma_p_sigma_p_times1. +qed. + +theorem sigma_p_times:\forall n,m:nat. +\forall f,f1,f2:nat \to bool. +\forall g:nat \to nat \to nat. +\forall g1,g2: nat \to nat. +(\forall a,b:nat. a < (S n) \to b < (S m) \to (g b a) < (S n)*(S m)) \to +(\forall a,b:nat. a < (S n) \to b < (S m) \to (g1 (g b a)) = a) \to +(\forall a,b:nat. a < (S n) \to b < (S m) \to (g2 (g b a)) = b) \to +(\forall a,b:nat. a < (S n) \to b < (S m) \to f (g b a) = andb (f2 b) (f1 a)) \to +(sigma_p ((S n) * (S m)) f (\lambda c:nat.(S O))) = +sigma_p (S n) f1 (\lambda c:nat.(S O)) * sigma_p (S m) f2 (\lambda c:nat.(S O)). +intros. + +rewrite > (sigma_P_SO_to_sigma_p_true ). +rewrite > (S_pred ((S n)*(S m))) in \vdash (? ? (? % ? ?) ?) +[ rewrite < (eq_map_iter_i_sigma_p_alwaysTrue (pred ((S n)* (S m)))). + rewrite > (permut_to_eq_map_iter_i plus assoc_plus sym_plus ? ? ? + (\lambda i.g (div i (S n)) (mod i (S n)))) + [ rewrite > eq_map_iter_i_sigma_p_alwaysTrue. + rewrite < S_pred + [ rewrite > eq_sigma_p_sigma_p_times2. + apply (trans_eq ? ? (sigma_p (S n) (\lambda c:nat.true) + (\lambda a. sigma_p (S m) (\lambda c:nat.true) + (\lambda b.(bool_to_nat (f2 b))*(bool_to_nat (f1 a)))))) + [ apply eq_sigma_p;intros + [ reflexivity + | apply eq_sigma_p;intros + [ reflexivity + | + rewrite > (div_mod_spec_to_eq (x1*(S n) + x) (S n) ((x1*(S n) + x)/(S n)) + ((x1*(S n) + x) \mod (S n)) x1 x) + [ rewrite > (div_mod_spec_to_eq2 (x1*(S n) + x) (S n) ((x1*(S n) + x)/(S n)) + ((x1*(S n) + x) \mod (S n)) x1 x) + [ rewrite > H3 + [ apply bool_to_nat_andb + | assumption + | assumption + ] + | apply div_mod_spec_div_mod. + apply lt_O_S + | constructor 1 + [ assumption + | reflexivity + ] + ] + | apply div_mod_spec_div_mod. + apply lt_O_S + | constructor 1 + [ assumption + | reflexivity + ] + ] + ] + ] + | apply (trans_eq ? ? + (sigma_p (S n) (\lambda c:nat.true) (\lambda n.((bool_to_nat (f1 n)) * + (sigma_p (S m) (\lambda c:nat.true) (\lambda n.bool_to_nat (f2 n))))))) + [ apply eq_sigma_p;intros + [ reflexivity + | rewrite > distributive_times_plus_sigma_p. + apply eq_sigma_p;intros + [ reflexivity + | rewrite > sym_times. + reflexivity + ] + ] + | apply sym_eq. + rewrite > sigma_P_SO_to_sigma_p_true. + rewrite > sigma_P_SO_to_sigma_p_true in \vdash (? ? (? ? %) ?). + rewrite > sym_times. + rewrite > distributive_times_plus_sigma_p. + apply eq_sigma_p;intros + [ reflexivity + | rewrite > distributive_times_plus_sigma_p. + rewrite < sym_times. + rewrite > distributive_times_plus_sigma_p. + apply eq_sigma_p; + intros; reflexivity + ] + ] + ] + | apply lt_O_times_S_S + ] + + | unfold permut. + split + [ intros. + rewrite < plus_n_O. + apply le_S_S_to_le. + rewrite < S_pred in \vdash (? ? %) + [ change with ((g (i/(S n)) (i \mod (S n))) \lt (S n)*(S m)). + apply H + [ apply lt_mod_m_m. + unfold lt. + apply le_S_S. + apply le_O_n + | apply (lt_times_to_lt_l n). + apply (le_to_lt_to_lt ? i) + [ rewrite > (div_mod i (S n)) in \vdash (? ? %) + [ rewrite > sym_plus. + apply le_plus_n + | unfold lt. + apply le_S_S. + apply le_O_n + ] + | unfold lt. + rewrite > S_pred in \vdash (? ? %) + [ apply le_S_S. + rewrite > plus_n_O in \vdash (? ? %). + rewrite > sym_times. + assumption + | apply lt_O_times_S_S + ] + ] + ] + | apply lt_O_times_S_S + ] + | rewrite < plus_n_O. + unfold injn. + intros. + cut (i < (S n)*(S m)) + [ cut (j < (S n)*(S m)) + [ cut ((i \mod (S n)) < (S n)) + [ cut ((i/(S n)) < (S m)) + [ cut ((j \mod (S n)) < (S n)) + [ cut ((j/(S n)) < (S m)) + [ rewrite > (div_mod i (S n)) + [ rewrite > (div_mod j (S n)) + [ rewrite < (H1 (i \mod (S n)) (i/(S n)) Hcut2 Hcut3). + rewrite < (H2 (i \mod (S n)) (i/(S n)) Hcut2 Hcut3) in \vdash (? ? (? % ?) ?). + rewrite < (H1 (j \mod (S n)) (j/(S n)) Hcut4 Hcut5). + rewrite < (H2 (j \mod (S n)) (j/(S n)) Hcut4 Hcut5) in \vdash (? ? ? (? % ?)). + rewrite > H6. + reflexivity + | unfold lt. + apply le_S_S. + apply le_O_n + ] + | unfold lt. + apply le_S_S. + apply le_O_n + ] + | apply (lt_times_to_lt_l n). + apply (le_to_lt_to_lt ? j) + [ rewrite > (div_mod j (S n)) in \vdash (? ? %) + [ rewrite > sym_plus. + apply le_plus_n + | unfold lt. apply le_S_S. + apply le_O_n + ] + | rewrite < sym_times. + assumption + ] + ] + | apply lt_mod_m_m. + unfold lt. + apply le_S_S. + apply le_O_n + ] + | apply (lt_times_to_lt_l n). + apply (le_to_lt_to_lt ? i) + [ rewrite > (div_mod i (S n)) in \vdash (? ? %) + [ rewrite > sym_plus. + apply le_plus_n + | unfold lt. + apply le_S_S. + apply le_O_n + ] + | rewrite < sym_times. + assumption + ] + ] + | apply lt_mod_m_m. + unfold lt. + apply le_S_S. + apply le_O_n + ] + | unfold lt. + rewrite > S_pred in \vdash (? ? %) + [ apply le_S_S. + assumption + | apply lt_O_times_S_S + ] + ] + | unfold lt. + rewrite > S_pred in \vdash (? ? %) + [ apply le_S_S. + assumption + | apply lt_O_times_S_S + ] + ] + ] + | intros. + apply False_ind. + apply (not_le_Sn_O m1 H4) + ] +| apply lt_O_times_S_S +] +qed. + +theorem sigma_p_knm: +\forall g: nat \to nat. +\forall h2:nat \to nat \to nat. +\forall h11,h12:nat \to nat. +\forall k,n,m. +\forall p1,p21:nat \to bool. +\forall p22:nat \to nat \to bool. +(\forall x. x < k \to p1 x = true \to +p21 (h11 x) = true \land p22 (h11 x) (h12 x) = true +\land h2 (h11 x) (h12 x) = x +\land (h11 x) < n \land (h12 x) < m) \to +(\forall i,j. i < n \to j < m \to p21 i = true \to p22 i j = true \to +p1 (h2 i j) = true \land +h11 (h2 i j) = i \land h12 (h2 i j) = j +\land h2 i j < k) \to +sigma_p k p1 g= +sigma_p n p21 (\lambda x:nat.sigma_p m (p22 x) (\lambda y. g (h2 x y))). +intros. +unfold sigma_p. +unfold sigma_p in \vdash (? ? ? (? ? ? ? (\lambda x:?.%) ? ?)). +apply iter_p_gen_knm + [apply symmetricIntPlus + |apply associative_plus + |intro.rewrite < plus_n_O.reflexivity + |exact h11 + |exact h12 + |assumption + |assumption + ] +qed. + + +theorem sigma_p2_eq: +\forall g: nat \to nat \to nat. +\forall h11,h12,h21,h22: nat \to nat \to nat. +\forall n1,m1,n2,m2. +\forall p11,p21:nat \to bool. +\forall p12,p22:nat \to nat \to bool. +(\forall i,j. i < n2 \to j < m2 \to p21 i = true \to p22 i j = true \to +p11 (h11 i j) = true \land p12 (h11 i j) (h12 i j) = true +\land h21 (h11 i j) (h12 i j) = i \land h22 (h11 i j) (h12 i j) = j +\land h11 i j < n1 \land h12 i j < m1) \to +(\forall i,j. i < n1 \to j < m1 \to p11 i = true \to p12 i j = true \to +p21 (h21 i j) = true \land p22 (h21 i j) (h22 i j) = true +\land h11 (h21 i j) (h22 i j) = i \land h12 (h21 i j) (h22 i j) = j +\land (h21 i j) < n2 \land (h22 i j) < m2) \to +sigma_p n1 p11 (\lambda x:nat .sigma_p m1 (p12 x) (\lambda y. g x y)) = +sigma_p n2 p21 (\lambda x:nat .sigma_p m2 (p22 x) (\lambda y. g (h11 x y) (h12 x y))). +intros. +unfold sigma_p. +unfold sigma_p in \vdash (? ? (? ? ? ? (\lambda x:?.%) ? ?) ?). +unfold sigma_p in \vdash (? ? ? (? ? ? ? (\lambda x:?.%) ? ?)). + +apply(iter_p_gen_2_eq nat O plus ? ? ? g h11 h12 h21 h22 n1 m1 n2 m2 p11 p21 p12 p22) +[ apply symmetricIntPlus +| apply associative_plus +| intro. + rewrite < (plus_n_O). + reflexivity +| assumption +| assumption +] +qed. + +theorem sigma_p_sigma_p: +\forall g: nat \to nat \to nat. +\forall n,m. +\forall p11,p21:nat \to bool. +\forall p12,p22:nat \to nat \to bool. +(\forall x,y. x < n \to y < m \to + (p11 x \land p12 x y) = (p21 y \land p22 y x)) \to +sigma_p n p11 (\lambda x:nat.sigma_p m (p12 x) (\lambda y. g x y)) = +sigma_p m p21 (\lambda y:nat.sigma_p n (p22 y) (\lambda x. g x y)). +intros. +unfold sigma_p.unfold sigma_p. +apply (iter_p_gen_iter_p_gen ? ? ? sym_plus assoc_plus) + [intros.apply sym_eq.apply plus_n_O. + |assumption + ] +qed. \ No newline at end of file