X-Git-Url: http://matita.cs.unibo.it/gitweb/?p=helm.git;a=blobdiff_plain;f=matita%2Flibrary%2Fnat%2Fle_arith.ma;fp=matita%2Flibrary%2Fnat%2Fle_arith.ma;h=a222d36bab2df5b26df3782439656478c936caae;hp=0000000000000000000000000000000000000000;hb=f61af501fb4608cc4fb062a0864c774e677f0d76;hpb=58ae1809c352e71e7b5530dc41e2bfc834e1aef1 diff --git a/matita/library/nat/le_arith.ma b/matita/library/nat/le_arith.ma new file mode 100644 index 000000000..a222d36ba --- /dev/null +++ b/matita/library/nat/le_arith.ma @@ -0,0 +1,168 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| A.Asperti, C.Sacerdoti Coen, *) +(* ||A|| E.Tassi, S.Zacchiroli *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU Lesser General Public License Version 2.1 *) +(* *) +(**************************************************************************) + +include "nat/times.ma". +include "nat/orders.ma". + +(* plus *) +theorem monotonic_le_plus_r: +\forall n:nat.monotonic nat le (\lambda m.n + m). +simplify.intros.elim n + [simplify.assumption. + |simplify.apply le_S_S.assumption + ] +qed. + +theorem le_plus_r: \forall p,n,m:nat. n \le m \to p + n \le p + m +\def monotonic_le_plus_r. + +theorem monotonic_le_plus_l: +\forall m:nat.monotonic nat le (\lambda n.n + m). +simplify.intros. +rewrite < sym_plus.rewrite < (sym_plus m). +apply le_plus_r.assumption. +qed. + +theorem le_plus_l: \forall p,n,m:nat. n \le m \to n + p \le m + p +\def monotonic_le_plus_l. + +theorem le_plus: \forall n1,n2,m1,m2:nat. n1 \le n2 \to m1 \le m2 +\to n1 + m1 \le n2 + m2. +intros. +(** +auto. +*) +apply (transitive_le (plus n1 m1) (plus n1 m2) (plus n2 m2) ? ?); + [apply (monotonic_le_plus_r n1 m1 m2 ?). + apply (H1). + |apply (monotonic_le_plus_l m2 n1 n2 ?). + apply (H). + ] +(* end auto($Revision$) proof: TIME=0.61 SIZE=100 DEPTH=100 *) +(* +apply (trans_le ? (n2 + m1)). +apply le_plus_l.assumption. +apply le_plus_r.assumption. +*) +qed. + +theorem le_plus_n :\forall n,m:nat. m \le n + m. +intros.change with (O+m \le n+m). +apply le_plus_l.apply le_O_n. +qed. + +theorem le_plus_n_r :\forall n,m:nat. m \le m + n. +intros.rewrite > sym_plus. +apply le_plus_n. +qed. + +theorem eq_plus_to_le: \forall n,m,p:nat.n=m+p \to m \le n. +intros.rewrite > H. +rewrite < sym_plus. +apply le_plus_n. +qed. + +theorem le_plus_to_le: +\forall a,n,m. a + n \le a + m \to n \le m. +intro. +elim a + [assumption + |apply H. + apply le_S_S_to_le.assumption + ] +qed. + +(* times *) +theorem monotonic_le_times_r: +\forall n:nat.monotonic nat le (\lambda m. n * m). +simplify.intros.elim n. +simplify.apply le_O_n. +simplify.apply le_plus. +assumption. +assumption. +qed. + +theorem le_times_r: \forall p,n,m:nat. n \le m \to p*n \le p*m +\def monotonic_le_times_r. + +theorem monotonic_le_times_l: +\forall m:nat.monotonic nat le (\lambda n.n*m). +simplify.intros. +rewrite < sym_times.rewrite < (sym_times m). +apply le_times_r.assumption. +qed. + +theorem le_times_l: \forall p,n,m:nat. n \le m \to n*p \le m*p +\def monotonic_le_times_l. + +theorem le_times: \forall n1,n2,m1,m2:nat. n1 \le n2 \to m1 \le m2 +\to n1*m1 \le n2*m2. +intros. +apply (trans_le ? (n2*m1)). +apply le_times_l.assumption. +apply le_times_r.assumption. +qed. + +theorem le_times_n: \forall n,m:nat.(S O) \le n \to m \le n*m. +intros.elim H.simplify. +elim (plus_n_O ?).apply le_n. +simplify.rewrite < sym_plus.apply le_plus_n. +qed. + +theorem le_times_to_le: +\forall a,n,m. S O \le a \to a * n \le a * m \to n \le m. +intro. +apply nat_elim2;intros + [apply le_O_n + |apply False_ind. + rewrite < times_n_O in H1. + generalize in match H1. + apply (lt_O_n_elim ? H). + intros. + simplify in H2. + apply (le_to_not_lt ? ? H2). + apply lt_O_S + |apply le_S_S. + apply H + [assumption + |rewrite < times_n_Sm in H2. + rewrite < times_n_Sm in H2. + apply (le_plus_to_le a). + assumption + ] + ] +qed. + +theorem le_S_times_SSO: \forall n,m.O < m \to +n \le m \to S n \le (S(S O))*m. +intros. +simplify. +rewrite > plus_n_O. +simplify.rewrite > plus_n_Sm. +apply le_plus + [assumption + |rewrite < plus_n_O. + assumption + ] +qed. +(*0 and times *) +theorem O_lt_const_to_le_times_const: \forall a,c:nat. +O \lt c \to a \le a*c. +intros. +rewrite > (times_n_SO a) in \vdash (? % ?). +apply le_times +[ apply le_n +| assumption +] +qed.