X-Git-Url: http://matita.cs.unibo.it/gitweb/?p=helm.git;a=blobdiff_plain;f=matita%2Flibrary%2Fnat%2Fminus.ma;fp=matita%2Flibrary%2Fnat%2Fminus.ma;h=a0133e93db58f65df22e64ca4e94944a26fda79e;hp=0000000000000000000000000000000000000000;hb=f61af501fb4608cc4fb062a0864c774e677f0d76;hpb=58ae1809c352e71e7b5530dc41e2bfc834e1aef1 diff --git a/matita/library/nat/minus.ma b/matita/library/nat/minus.ma new file mode 100644 index 000000000..a0133e93d --- /dev/null +++ b/matita/library/nat/minus.ma @@ -0,0 +1,399 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| A.Asperti, C.Sacerdoti Coen, *) +(* ||A|| E.Tassi, S.Zacchiroli *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU Lesser General Public License Version 2.1 *) +(* *) +(**************************************************************************) + + +include "nat/le_arith.ma". +include "nat/compare.ma". + +let rec minus n m \def + match n with + [ O \Rightarrow O + | (S p) \Rightarrow + match m with + [O \Rightarrow (S p) + | (S q) \Rightarrow minus p q ]]. + +(*CSC: the URI must disappear: there is a bug now *) +interpretation "natural minus" 'minus x y = (cic:/matita/nat/minus/minus.con x y). + +theorem minus_n_O: \forall n:nat.n=n-O. +intros.elim n.simplify.reflexivity. +simplify.reflexivity. +qed. + +theorem minus_n_n: \forall n:nat.O=n-n. +intros.elim n.simplify. +reflexivity. +simplify.apply H. +qed. + +theorem minus_Sn_n: \forall n:nat. S O = (S n)-n. +intro.elim n. +simplify.reflexivity. +elim H.reflexivity. +qed. + +theorem minus_Sn_m: \forall n,m:nat. m \leq n \to (S n)-m = S (n-m). +intros 2. +apply (nat_elim2 +(\lambda n,m.m \leq n \to (S n)-m = S (n-m))). +intros.apply (le_n_O_elim n1 H). +simplify.reflexivity. +intros.simplify.reflexivity. +intros.rewrite < H.reflexivity. +apply le_S_S_to_le. assumption. +qed. + +theorem eq_minus_S_pred: \forall n,m. n - (S m) = pred(n -m). +apply nat_elim2 + [intro.reflexivity + |intro.simplify.autobatch + |intros.simplify.assumption + ] +qed. + +theorem plus_minus: +\forall n,m,p:nat. m \leq n \to (n-m)+p = (n+p)-m. +intros 2. +apply (nat_elim2 +(\lambda n,m.\forall p:nat.m \leq n \to (n-m)+p = (n+p)-m)). +intros.apply (le_n_O_elim ? H). +simplify.rewrite < minus_n_O.reflexivity. +intros.simplify.reflexivity. +intros.simplify.apply H.apply le_S_S_to_le.assumption. +qed. + +theorem minus_plus_m_m: \forall n,m:nat.n = (n+m)-m. +intros 2. +generalize in match n. +elim m. +rewrite < minus_n_O.apply plus_n_O. +elim n2.simplify. +apply minus_n_n. +rewrite < plus_n_Sm. +change with (S n3 = (S n3 + n1)-n1). +apply H. +qed. + +theorem plus_minus_m_m: \forall n,m:nat. +m \leq n \to n = (n-m)+m. +intros 2. +apply (nat_elim2 (\lambda n,m.m \leq n \to n = (n-m)+m)). +intros.apply (le_n_O_elim n1 H). +reflexivity. +intros.simplify.rewrite < plus_n_O.reflexivity. +intros.simplify.rewrite < sym_plus.simplify. +apply eq_f.rewrite < sym_plus.apply H. +apply le_S_S_to_le.assumption. +qed. + +theorem minus_to_plus :\forall n,m,p:nat.m \leq n \to n-m = p \to +n = m+p. +intros.apply (trans_eq ? ? ((n-m)+m)). +apply plus_minus_m_m. +apply H.elim H1. +apply sym_plus. +qed. + +theorem plus_to_minus :\forall n,m,p:nat. +n = m+p \to n-m = p. +intros. +apply (inj_plus_r m). +rewrite < H. +rewrite < sym_plus. +symmetry. +apply plus_minus_m_m.rewrite > H. +rewrite > sym_plus. +apply le_plus_n. +qed. + +theorem minus_S_S : \forall n,m:nat. +eq nat (minus (S n) (S m)) (minus n m). +intros. +reflexivity. +qed. + +theorem minus_pred_pred : \forall n,m:nat. lt O n \to lt O m \to +eq nat (minus (pred n) (pred m)) (minus n m). +intros. +apply (lt_O_n_elim n H).intro. +apply (lt_O_n_elim m H1).intro. +simplify.reflexivity. +qed. + +theorem eq_minus_n_m_O: \forall n,m:nat. +n \leq m \to n-m = O. +intros 2. +apply (nat_elim2 (\lambda n,m.n \leq m \to n-m = O)). +intros.simplify.reflexivity. +intros.apply False_ind. +apply not_le_Sn_O; +[2: apply H | skip]. +intros. +simplify.apply H.apply le_S_S_to_le. apply H1. +qed. + +theorem le_SO_minus: \forall n,m:nat.S n \leq m \to S O \leq m-n. +intros.elim H.elim (minus_Sn_n n).apply le_n. +rewrite > minus_Sn_m. +apply le_S.assumption. +apply lt_to_le.assumption. +qed. + +theorem minus_le_S_minus_S: \forall n,m:nat. m-n \leq S (m-(S n)). +intros.apply (nat_elim2 (\lambda n,m.m-n \leq S (m-(S n)))). +intro.elim n1.simplify.apply le_n_Sn. +simplify.rewrite < minus_n_O.apply le_n. +intros.simplify.apply le_n_Sn. +intros.simplify.apply H. +qed. + +theorem lt_minus_S_n_to_le_minus_n : \forall n,m,p:nat. m-(S n) < p \to m-n \leq p. +intros 3.simplify.intro. +apply (trans_le (m-n) (S (m-(S n))) p). +apply minus_le_S_minus_S. +assumption. +qed. + +theorem le_minus_m: \forall n,m:nat. n-m \leq n. +intros.apply (nat_elim2 (\lambda m,n. n-m \leq n)). +intros.rewrite < minus_n_O.apply le_n. +intros.simplify.apply le_n. +intros.simplify.apply le_S.assumption. +qed. + +theorem lt_minus_m: \forall n,m:nat. O < n \to O < m \to n-m \lt n. +intros.apply (lt_O_n_elim n H).intro. +apply (lt_O_n_elim m H1).intro. +simplify.unfold lt.apply le_S_S.apply le_minus_m. +qed. + +theorem minus_le_O_to_le: \forall n,m:nat. n-m \leq O \to n \leq m. +intros 2. +apply (nat_elim2 (\lambda n,m:nat.n-m \leq O \to n \leq m)). +intros.apply le_O_n. +simplify.intros. assumption. +simplify.intros.apply le_S_S.apply H.assumption. +qed. + +(* galois *) +theorem monotonic_le_minus_r: +\forall p,q,n:nat. q \leq p \to n-p \le n-q. +simplify.intros 2.apply (nat_elim2 +(\lambda p,q.\forall a.q \leq p \to a-p \leq a-q)). +intros.apply (le_n_O_elim n H).apply le_n. +intros.rewrite < minus_n_O. +apply le_minus_m. +intros.elim a.simplify.apply le_n. +simplify.apply H.apply le_S_S_to_le.assumption. +qed. + +theorem le_minus_to_plus: \forall n,m,p. (le (n-m) p) \to (le n (p+m)). +intros 2.apply (nat_elim2 (\lambda n,m.\forall p.(le (n-m) p) \to (le n (p+m)))). +intros.apply le_O_n. +simplify.intros.rewrite < plus_n_O.assumption. +intros. +rewrite < plus_n_Sm. +apply le_S_S.apply H. +exact H1. +qed. + +theorem le_plus_to_minus: \forall n,m,p. (le n (p+m)) \to (le (n-m) p). +intros 2.apply (nat_elim2 (\lambda n,m.\forall p.(le n (p+m)) \to (le (n-m) p))). +intros.simplify.apply le_O_n. +intros 2.rewrite < plus_n_O.intro.simplify.assumption. +intros.simplify.apply H. +apply le_S_S_to_le.rewrite > plus_n_Sm.assumption. +qed. + +(* the converse of le_plus_to_minus does not hold *) +theorem le_plus_to_minus_r: \forall n,m,p. (le (n+m) p) \to (le n (p-m)). +intros 3.apply (nat_elim2 (\lambda m,p.(le (n+m) p) \to (le n (p-m)))). +intro.rewrite < plus_n_O.rewrite < minus_n_O.intro.assumption. +intro.intro.cut (n=O).rewrite > Hcut.apply le_O_n. +apply sym_eq. apply le_n_O_to_eq. +apply (trans_le ? (n+(S n1))). +rewrite < sym_plus. +apply le_plus_n.assumption. +intros.simplify. +apply H.apply le_S_S_to_le. +rewrite > plus_n_Sm.assumption. +qed. + +(* minus and lt - to be completed *) +theorem lt_minus_l: \forall m,l,n:nat. + l < m \to m \le n \to n - m < n - l. +apply nat_elim2 + [intros.apply False_ind.apply (not_le_Sn_O ? H) + |intros.rewrite < minus_n_O. + autobatch + |intros. + generalize in match H2. + apply (nat_case n1) + [intros.apply False_ind.apply (not_le_Sn_O ? H3) + |intros.simplify. + apply H + [ + apply lt_S_S_to_lt. + assumption + |apply le_S_S_to_le.assumption + ] + ] + ] +qed. + +theorem lt_minus_r: \forall n,m,l:nat. + n \le l \to l < m \to l -n < m -n. +intro.elim n + [applyS H1 + |rewrite > eq_minus_S_pred. + rewrite > eq_minus_S_pred. + apply lt_pred + [unfold lt.apply le_plus_to_minus_r.applyS H1 + |apply H[autobatch|assumption] + ] + ] +qed. + +lemma lt_to_lt_O_minus : \forall m,n. + n < m \to O < m - n. +intros. +unfold. apply le_plus_to_minus_r. unfold in H. rewrite > sym_plus. +rewrite < plus_n_Sm. +rewrite < plus_n_O. +assumption. +qed. + +theorem lt_minus_to_plus: \forall n,m,p. (lt n (p-m)) \to (lt (n+m) p). +intros 3.apply (nat_elim2 (\lambda m,p.(lt n (p-m)) \to (lt (n+m) p))). +intro.rewrite < plus_n_O.rewrite < minus_n_O.intro.assumption. +simplify.intros.apply False_ind.apply (not_le_Sn_O n H). +simplify.intros.unfold lt. +apply le_S_S. +rewrite < plus_n_Sm. +apply H.apply H1. +qed. + +theorem lt_O_minus_to_lt: \forall a,b:nat. +O \lt b-a \to a \lt b. +intros. +rewrite > (plus_n_O a). +rewrite > (sym_plus a O). +apply (lt_minus_to_plus O a b). +assumption. +qed. + +theorem lt_minus_to_lt_plus: +\forall n,m,p. n - m < p \to n < m + p. +intros 2. +apply (nat_elim2 ? ? ? ? n m) + [simplify.intros.autobatch. + |intros 2.rewrite < minus_n_O. + intro.assumption + |intros. + simplify. + cut (n1 < m1+p) + [autobatch + |apply H. + apply H1 + ] + ] +qed. + +theorem lt_plus_to_lt_minus: +\forall n,m,p. m \le n \to n < m + p \to n - m < p. +intros 2. +apply (nat_elim2 ? ? ? ? n m) + [simplify.intros 3. + apply (le_n_O_elim ? H). + simplify.intros.assumption + |simplify.intros.assumption. + |intros. + simplify. + apply H + [apply le_S_S_to_le.assumption + |apply le_S_S_to_le.apply H2 + ] + ] +qed. + +theorem minus_m_minus_mn: \forall n,m. n\le m \to n=m-(m-n). +intros. +apply sym_eq. +apply plus_to_minus. +autobatch. +qed. + +theorem distributive_times_minus: distributive nat times minus. +unfold distributive. +intros. +apply ((leb_elim z y)). + intro.cut (x*(y-z)+x*z = (x*y-x*z)+x*z). + apply (inj_plus_l (x*z)).assumption. + apply (trans_eq nat ? (x*y)). + rewrite < distr_times_plus.rewrite < (plus_minus_m_m ? ? H).reflexivity. + rewrite < plus_minus_m_m. + reflexivity. + apply le_times_r.assumption. + intro.rewrite > eq_minus_n_m_O. + rewrite > (eq_minus_n_m_O (x*y)). + rewrite < sym_times.simplify.reflexivity. + apply le_times_r.apply lt_to_le.apply not_le_to_lt.assumption. + apply lt_to_le.apply not_le_to_lt.assumption. +qed. + +theorem distr_times_minus: \forall n,m,p:nat. n*(m-p) = n*m-n*p +\def distributive_times_minus. + +theorem eq_minus_plus_plus_minus: \forall n,m,p:nat. p \le m \to (n+m)-p = n+(m-p). +intros. +apply plus_to_minus. +rewrite > sym_plus in \vdash (? ? ? %). +rewrite > assoc_plus. +rewrite < plus_minus_m_m. +reflexivity.assumption. +qed. + +theorem eq_minus_minus_minus_plus: \forall n,m,p:nat. (n-m)-p = n-(m+p). +intros. +cut (m+p \le n \or m+p \nleq n). + elim Hcut. + symmetry.apply plus_to_minus. + rewrite > assoc_plus.rewrite > (sym_plus p).rewrite < plus_minus_m_m. + rewrite > sym_plus.rewrite < plus_minus_m_m. + reflexivity. + apply (trans_le ? (m+p)). + rewrite < sym_plus.apply le_plus_n. + assumption. + apply le_plus_to_minus_r.rewrite > sym_plus.assumption. + rewrite > (eq_minus_n_m_O n (m+p)). + rewrite > (eq_minus_n_m_O (n-m) p). + reflexivity. + apply le_plus_to_minus.apply lt_to_le. rewrite < sym_plus. + apply not_le_to_lt. assumption. + apply lt_to_le.apply not_le_to_lt.assumption. + apply (decidable_le (m+p) n). +qed. + +theorem eq_plus_minus_minus_minus: \forall n,m,p:nat. p \le m \to m \le n \to +p+(n-m) = n-(m-p). +intros. +apply sym_eq. +apply plus_to_minus. +rewrite < assoc_plus. +rewrite < plus_minus_m_m. +rewrite < sym_plus. +rewrite < plus_minus_m_m.reflexivity. +assumption.assumption. +qed.